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Introduction

I wrote this book because I have some new ideas about how 
the neocortex works. Since this remarkable organ is relevant to all 
human beings and not just neuroscientists, the first three chapters 
provide a short introduction to biological information processing 
and the neocortex – they are designed to provide enough background 
information for the rest of the book to be readily understood, re-
gardless of your prior knowledge. If you have studied neuroscience, 
this book is about dendritic computation and the functions of neu-
rons in different cortical layers, and you might want to skip straight 
ahead to chapter 4.

Enjoy.





1

Evolution of Information 
Processing Capabilities

Every biological organism can be thought of as an informa-
tion processing mechanism. It is worth looking at the history of in-
formation processing capabilities and their evolution to see how the 
modern mammalian brain differs from other information process-
ing systems.

While little is known about the earliest living organisms, we 
can be certain that they did not have sensors to examine the outside 
world. They existed in energy rich environments and gained energy 
simply by colliding with things from which they could extract it.

Single cell organisms developed sensors somewhere in the 
evolutionary process. E. coli have the ability to detect whether the 
environment they are in contains either of the sources of energy they 
most frequently use: glucose and lactose. When glucose, their pre-
ferred energy source, is available, E. coli produce enzymes to me-
tabolize it. If glucose is absent but lactose is present, they produce 
enzymes that metabolize lactose instead1. In terms of information 
processing, such behavior can be described with a very simple algo-
rithm of the sort that humans have been writing for decades:
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if (glucose_is_present):

	 produce_enzymes_to_metabolize_glucose ()

else:

	 if (lactose_is_present):

		  produce_enzymes_to_metabolize_lactose()

Note that no memory storage is required for the execution 
of this algorithm, nor are the E. coli sensors particularly advanced. 
They cannot analyze the entire spectrum of chemical compounds 
that E. coli encounter and create a list; they can only detect the par-
ticular compounds of glucose and lactose (and a few others). This 
level of information processing requires no nervous system, which a 
single-cell organism could not possess anyway.

Insects do have nervous systems with up to a million neu-
rons each. They allow insects to perform information-processing 
tasks of considerable complexity. Insect eyes can analyze any visual 
information they encounter and recognize familiar shapes. They also 
utilize advanced sensors. Jumping spiders, for example, have eight 
eyes. Six of them are like fisheye cameras that survey the environ-
ment for moving objects. When such objects are detected, the spider 
turns its head to image the objects with its two high-resolution, tun-
nel-like eyes. These confirm if the objects have any nutritional or re-
productive value to the spider and elicit fairly complicated behaviors 
in response, such as jumping at prey or courtship dances2. Moreover, 
insects can navigate real-world environments very well – sand wasps 
will hunt as far as a mile away from their nests and can reliably find 
their way back to a tiny hole in the ground. 

However, there are clear limits to what insects can do. While 
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they are able to recognize shapes, the shapes they recognize are ge-
netically preprogrammed, as are the insects’ behavioral responses to 
the shapes. Sand wasps would be unable to learn that they can push 
a lever to receive a reward of food. Insect capabilities are therefore 
similar in their level of complexity to those of a modern self-driv-
ing car: they can examine its surroundings, recognize dangers and 
opportunities, and select from a set of behaviors those that are the 
most likely to lead to success. Navigational capabilities do require 
memory, but in the case of insects, the kinds of memories they can 
have are fixed. They can remember maps and objects but would not 
be able to learn symbolic representations. Note that the acquisition 
of new skills for insects and other organisms of similar complexity 
happens not within the lifetime of a single organism, but as an evo-
lutionary process. 

Mammalsi have the most advanced brains and, thus, the best 
information processing capabilities of all animals on Earth. Mam-
mals are able to acquire new skills within their lifetimes, learn sym-
bolic representations such as languages, and, perhaps most impor-
tantly, teach and learn new skills through communication. While it 
is up for debate whether all mammals can do such things, it is largely 
understood that these capabilities heavily depend on the part of the 
brain called the neocortex (the cortex for short). It’s the part of your 
brain that is reading this book, as well as the part that can learn math 
and remember facesii. 

In the evolutionary process, the neocortex did not replace 
the reptile brain. Instead, it evolved on top of it – literally, as the 
i	  The goal of this chapter is not to delineate precisely the information processing 
capabilities of various living organisms, but to showcase the general growth of them.
ii	  Other parts of the brain participate in these processes, but the cortex does the 
heavy lifting.
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neocortex is physically located atop the brain, just beneath the skull. 
Because the neocortex was the last part of the brain to evolve, it is 
heavily interconnected with all the other, older parts. These other 
parts of the brain have specific purposes. Some track information 
about hunger. Some help the animal maintain balance. Some store 
basic skills that animals are born with, like walking.

 The cortex introduces a layer of intelligence on top of the 
range of abilities that reptiles possess. It adds significant data analy-
sis and memory capabilities for mammals, allowing them to utilize 
their bodies and other parts of the brain more efficiently. Exactly 
how it does this has so far been a mystery. We understand perfectly 
how other, older parts of the brain respond to sensory information. 
We can predict how ganglion cells that are the output cells of the 
retina react to light, as they react the same way every time we show 
the eye the same picture. When the same visual information is trans-
mitted to the cortex, however, even the first part of the visual cortex 
to receive it responds differently across trials3. A simple way to think 
about it is that thoughts, memories, and the state of mind all come 
into play at that point. It is the pinnacle of information processing on 
Earth – let’s jump right in to how it works.



2 

Introduction to the Neocortex

The cortex is a flat, thin structure on top of mammalian 
brains. It is about two millimeters thick. If we were to straighten it 
out, a human cortex would look like a pizza or a dinner napkin. A rat 
cortex would be the size of a quarter. While crammed into a skull, a 
cortex is highly convoluted – the image that you have in your head 
of the brain is actually an image of the neocortex. The other parts of 
the brain are concealed underneath it.

All mammalian cortices are similar. They all have the same 
types of neurons and they all have very similar structures (more 
about both of these later). The reason that humans are smarter than 
rats is largely a function of the size of our cortex, not because we 
have any different special cell typesiii.

The cortex is difficult to study because it is huge and largely 
uniform. The human neocortex contains ~20 billion neurons and 
offers no immediately obvious way to divide it into parts (which is 
the first thing scientists try to do when faced with a new object), 
apart from, perhaps, the division into two hemispheres. That being 
said, scientists have made incredible advances over the past century, 
iii	  Humans may have cell types not present in, say, mice, but the vast majority of 
neuron types are the same in all mammals.
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and we now know quite a few things about what the cortex does and 
how it does it.

It is a computer scientist’s immediate instinct to compare the 
cortex to a CPU of a computer. It is natural to do so – the cortex 
performs functions, like math, that we usually associate with pro-
cessing. However, humans have not yet built anything that could be 
accurately compared to the cortexiv. Moreover, we do know that the 
cortex is, in essence, not a processing system like a CPU, but a mem-
ory system. As this is not immediately obvious, some examples are 
in order.

Imagine a batter on a baseball field. Any second now, an-
other person is going to throw a ball at him. That ball is going to fly 
at ~100 miles per hour for 0.45-0.6 seconds. In that time, the batter 
has to decide whether to hit the ball and how to swing the bat if he 
chooses to do so. It is impossible for a human brain to compute the 
differential equations that will give the trajectory of the ball and the 
muscle movements required to hit it in half a second. So, the cortex 
does not do that. What it does instead is bring up the memories of all 
the baseballs flying at you (and the preceding movements of the per-
son throwing the ball) and selects a behavioral response that, in the 
batter’s experience, has been the most likely to result in a successful 
response to the sensory input. For professional baseball players, such 
memories occupy a relatively high proportion of their cortex, which 
is why they are so good at what they do. Generally, people become 
better at doing things with practice. This is a function of a memory 
system, but not of a processing, computing system. 

iv	  As evidenced by a lack of all-out warfare between humans and this object, and 
following enslavement of the former by the latter. Note to self: joke funny, but unfit for 
publication. Delete before disseminating.
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But what about math? Surely doing math is a computing pro-
cess, not a memory one! Not necessarily. Try multiplying 13 by 26 in 
your head. There are a few ways you could do this, but let’s assume 
that you pick the most basic one. First, you multiply ten by twen-
ty-six. You remember that multiplying something by ten requires 
only adding a zero at the end. You hold the number 260 in your 
memory. Then you multiply twenty by three. You remember that the 
answer is sixty. You hold 60 in your memory also. You then multiply 
3 by 6. You have all single-digit multiplications memorized, so you 
know that the answer is 18. Most of the operations involved in a 
computational process such as math are, in human brains, memory 
operations. 

The type of memory that the neocortex uses for most pur-
poses is sequence memory. Information comes into animal brains in 
a continuous stream, rather than in discrete chunks. While awake, 
mammals generally do not stop seeing or hearing. Moreover, infor-
mation always comes into your brain sequentially, and it is frequent-
ly important which parts come after others.  

To illustrate this with an example, try recalling the third 
line of your favorite song. Most likely you will have to go mentally 
through the preceding two lines first. Your brain has always heard 
the third line following the first two. Sure, you remember the lyrics 
of the whole song – but you remember them as a sequence. Another 
example would be trying to recall the location of a certain lost object, 
such as your car keys. To try to get to that location, you recall the 
prior sequence of behaviors that involved you and, potentially, that 
could have included the object as well.

The cortex (and another part of the brain called the hip-
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pocampus, which we’ll get to later) always record the sequence of 
events that happen to you. Not all of that memory is stored perma-
nently; some is either purposefully deleted or gradually degrades 
over time4,5.

By contrast, computers don’t generally store sequences of 
events. Most computer memory storage systems involve discrete 
chunks of data, such as images or numbers. If we want to build com-
puters that are more like humans in their capabilities, we will need to 
address the problem of storing memories in the form of sequences.

The most important reason for storing sequences in the cor-
tex is that they allow mammals to make predictions. When we hear a 
certain set of piano chords and the phrase “Imagine there’s no heav-
en,” our brain immediately predicts that the next phrase we hear will 
be “It’s easy if you try.” Moreover, if the next phrase does not match 
our expectation, our attention immediately kicks into high gear. 
Recognizing sequences in the sensory stream, making predictions 
about the next steps of these sequences, and comparing predictions 
with the actual input that follows are fundamental activities of the 
neocortex.

While visual and auditory information may seem very dif-
ferent to you, your cortex approaches both of these data types in the 
same way: recognize sequence, make prediction, and verify predic-
tion. One of the biggest revelations about the neocortex was made by 
Vernon Mountcastle when he suggested that the cortex has a com-
mon algorithm6 for dealing with different types of information. He 
based that suggestion on the fact that the parts of the cortex that 
process auditory and visual information look exactly the same. In 
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fact, ALL of the parts of the cortex look very similarv.
Let’s dwell on this, for it is very important. We have now 

experimentally verified that if you take a baby ferret and rewire its 
brain, connecting its eyes to the part of the cortex that normally han-
dles hearing, the ferret will develop functioning visual pathways in 
that part of the cortex7. It’s the same way with humans. If you take a 
human who has lost their sight and connect a camera to their tongue 
with a chip in the middle that encodes visual information into elec-
tric pulses shocking the tongue, the person will be able to function-
ally “see” the world, albeit at a lower resolution than people regularly 
do8. There is nothing fundamentally different about different parts 
of the cortex, only the sources of information they are connected to.

Francis Crick, one of the discoverers of the shape of the DNA 
molecule, turned to neuroscience later in life and achieved quite a bit 
of prominence in the field. Once, he was delivering a lecture to peo-
ple unversed in biological sciences. A woman asked him – “Professor 
Crick, what is the most important discovery in neuroscience?” He 
thought for a while and then replied, “The most important discovery 
I know of is that the brain is plastic”. The woman promptly fainted.  
While it would be more amazing if the brain was literally made of 
plastic, the ability of the cortex to rearrange itself to adapt to new cir-
cumstances is nothing short of amazing. That is why mammals are 
able to learn new skills, while animals without a neocortex are most-
ly limited by the set of behaviors that is genetically preprogrammed 
in themvi.

That being said, there is a fair bit of structure in the cortex 

v	  There are known differences, but they are easily eclipsed by the similarities.
vi	  Birds can also learn new skills, but do not have a neocortex. Birds evolved a 
different structure on top of the reptilian brain than mammals did. Theirs is also plastic. 
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that is maintained across humansvii. Barring extraordinary circum-
stances, different people will process speech in the same parts of the 
cortex. In other parts of the cortex, they will plan reaching motions. 
And yet all of these parts have the same structure – and can perform 
functions they do not perform naturally if rewired! That means that 
the question of how the different parts of the cortex are connected to 
each other is very important.

The answer?  The different parts are connected hierarchical-
ly9. A human cortex can be thought of as a hierarchy of cortical re-
gions that all operate using the same principles and are connected in 
an ordered fashion, wherein some of the regions are more high-level 
than othersviii. Here is a high-level scheme of the cortical hierarchy: 

Figure 1 – Hierarchy of the Neocortex

vii	  The structure of the cortex is maintained in other mammals, but each specie 
has their own structure. The structure of the human cortex is, expectedly, more similar to 
that of apes than that of mice.
viii	  This idea is the basis of the “hottest” machine learning technology – deep 
learning.

Low-level single sense regions

High-level multisensory region
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There are a few interesting things about this. 
First of all, the lower regions in the hierarchy are single-sense 

regions. They find small patterns in information, like edges and large 
blobs of color in the visual field. Higher regions find patterns in the 
edges and blobs of color – squares, circles, etc. Regions higher yet 
might find patterns in squares and circles to identify objects as ta-
bles or cats. Most objects that humans encounter affect multiple dif-
ferent senses. For example, chairs affect touch and vision, bananas 
affect touch, vision, smell and taste, pianos affect vision, touch and 
hearing, etc. Hence, higher-level concepts representing real-world 
objects are generally found in multi-sensory regions. 

The second important aspect of the hierarchy is that infor-
mation flows both ways – up and down it. Generally, sensory in-
formation flows up the hierarchy, while predictions and goals flow 
down the hierarchy10. If a cortical region identifies a cat, it sends that 
identification upwards. Down comes information about this partic-
ular cat – that it’s named Nokizaru, and that it generally meows when 
you don’t feed it for a while, which is the case currently. Consequent-
ly, this region might send a prediction of meowing to the auditory 
region beneath it in the hierarchy. Another prediction might be that 
the cat bites when it’s very hungry.

Finally, a crucial feature is that cortical regions have both sen-
sory and motor components. Visual regions mostly process informa-
tion that comes from the retina, but they also control eye movement 
and receive information about the position of the eyes. Similarly, re-
gions that receive information from mouse whiskers control whisker 
movement11, and so on. It makes sense – to be able to predict what 
you are going to see the next second, you need to know where your 
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eyes are going to move.
It was mentioned earlier that the cortex has the same struc-

ture in all of the different regions. That structure is a laminar one 
– each part of the cortex consists of layers, about six of themix. Gen-
erally, they are referred to as layers 1 through 6. They are ordered 
by proximity to the skull – layer 1 is the closest to the skull, while 
layer 6 is the deepest (the motor component mentioned above is lay-
er 5). There are variations on how thick different layers are in differ-
ent parts of the cortex, but the basic structure is remarkably similar. 
Moreover, each layer has cell types specific to it, and that specificity 
is maintained across the neocortex. 

The higher regions of the cortex (higher in terms of hierar-
chy of information flow, not physical location) deal with higher level 
concepts, and so their layer 5 is slightly different from that of the sen-
sory regions. Their layer 5 may not send motor commands directly 
to the parts of the nervous system that control muscles. Instead, it 
can send “high level” motor commands – like “go to the bath” – to 
the lower levels of the cortex, which translate those into sequences of 
smaller motor behaviors.

In a sense, the cortex is always building a sensory-motor 
model of the world. It makes predictions about what sensory infor-
mation will come in if you pursue different courses of action, and it 
chooses the course with the most desirable outcome. 

To give you an example of how that works, my lower visual 
regions currently see looming green circles. My higher-level visual 
regions recognize them as cat eyes. My high-level cortical regions 
start paying attention to my tactile regions that verify that I still have 
ix	  Six is the classical number, although many scientists divide the cortex into 
layers differently.
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bite marks from the last time I tried to postpone feeding the cat. The 
high level cortical regions make a prediction that unless I feed my cat 
right now, I will be bitten again shortly. Hence, the high level corti-
cal regions decide that I should feed the cat and send the command 
down the hierarchy to go feed her. My lower level regions recall the 
sequence of movements that end up in a fed cat and, consequently, 
lack of bite marks, and begin to execute them. 

Note that every behavior is a result of some motivation – in 
this case, fear of being bitten the unconditional love I have for my cat. 
Most such motivations are connected to emotions, such as fear, hun-
ger, or love, which reside in subcortical structures (the older parts of 
the brain that are not the cortex). The cortex is tightly interconnect-
ed with those structures, and emotions have important effects on 
cortical functioning. They help select goals, but they also highlight 
certain memories as important. Think of the last emotionally intense 
situation you encountered – you are likely to remember it vividly. 

Going back to goals for a second – this book is going to be 
talking a lot about goals. While that word has a lot of meanings in 
the human world, this book will be largely talking about immediate 
animal goals – hunger, cold, fear, etc. Interestingly enough, all but 
one of the different goals that humans have come from emotions 
and, thus, from subcortical structures. The only goal that is native 
to the cortex is curiosity. For the cortex to be useful, it has to make 
correct predictions about the world. Hence, it must have a motiva-
tion for learning to make correct predictions. That motivation has 
to force the cortex to build better models of the world and resolve 
inconsistencies through experiments – it’s curiosity! When we build 
true artificial intelligence (AI, or AGI as people like to call it today), 
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curiosity will be its only inevitable motivation. Such an entity will 
have no need for the evolutionary baggage of hunger or fear of snakes 
(the common sci-fi premise of “artificial humans” is very unlikely), 
but intelligence simply does not work without curiosity. What other 
motivations such a being might have will be left up to its creators.

One of the main features of information processing systems 
is how they store information in memory. Computers store informa-
tion in binary code – 101010 would, for example, denote the number 
42. Note that this notation only works well if each bit is reliable. If 
we change the leftmost bit to 0, the meaning of the notation changes 
to ten. The cortex utilizes a rather different form of memory storage. 
A useful abstraction to help people understand it is called an SDR 
– sparse distributed representation. The word “sparse” means that a 
small proportion of bits are active a (i.e. are 1s and not 0s; within the 
context of the cortex, a neuron firing represents a 1) at the same time 
– maybe 2%. By comparison, regular binary notations are dense – 
roughly 50% of bits are ones in them. The word “distributed” means 
that the activation of many bits is required to represent something.

An SDR might look like this:
0100010000010000000100000100001000000010000000000
Note that an SDR does not assign more meaning to the bits 

further to the left. In fact, the same SDR can look like this:
01000100000100
00000100000100
00100000001000
0000000
The position of each bit does not matter. No bit is more “im-

portant” than another. However, each bit has some semantic mean-
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ing associated with it. Let’s say that this SDR is representing an ani-
mal. Some of the bits might have the following meanings: 

Figure 2 – Tiger Encoded in an SDR

All of these bits denote different aspects of a tiger. Note that 
if we change a single active bit to 0, the meaning of the representa-
tion as a whole will not change that much (even less so given that in 
brains these representations consist of thousands of bits, as a single 
neuron might have anywhere between 1000-30000 synapses). Such 
an arrangement is useful in identifying objects with incomplete in-
formation. For example, if you can’t see the tiger’s legs, and you can’t 
be sure that there are four of them, you can still identify it as a tiger 
because the other evidence is overwhelming.

Naturally, within the cortex, the semantic meaning of each 
neuron is dependent on where the neurons are located and what 
they are connected to. Some neurons in the visual cortex have mean-
ings like edges or large blobs of color. Some neurons in the auditory 
cortex might correspond to various musical notes. In the higher lev-
els of the cortical hierarchy, individual neurons have more abstract 
meanings, like “noun”, “eloquent” or “Jefferson Airplane”. Note that 
when I say that neurons have meanings – it’s not that individual neu-
rons precisely encode concepts, but rather that the “Jefferson Air-

      0100010000010000000100000100001000000010000000000

Furry Has 4 legs Striped Orange Has big teeth



SERGEY ALEXASHENKO22

plane” neuron fires when the brain thinks of something related to 
that name. 

Of course, real neurons aren’t “bits”. The concept of SDRs 
is simply useful to think about how complex concepts are encoded 
with large assemblies of neurons. The concepts of sparsity and infor-
mation being encoded by large groups of neurons are both present 
in the cortexx. 

If this is a little bit confusing, consider how the neocortex 
encodes the memory of an elephant. The visual cortex has neurons 
that encode blobs of gray and the shape of an elephant. The audi-
tory cortex has neurons that encode trumpeting. Somewhere high 
up in the hierarchy there are neurons that encode abstract concepts 
like “mammal” and “herbivore”, as well as the word “elephant”. These 
neurons together encode an elephant.  

Figure 3 – Elephant Encoded in a Hierarchy of SDRs

It is tempting to think that only the neurons that are labelled 
“Elephant” encode an elephant, but that view is wrong. An elephant 

x	  SDRs have many interesting properties; to learn more about them, check out 
Numenta’s work.

Object Categories

00100000100011000

Colors Shapes Sound

Mammal Elephant

00000100001000 0001000100000010001000

Gray Elephant-like Trumpeting
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is encoded by all of the neurons active above. Moreover, neurons 
that are labelled “Elephant” can only be activated if the lower-level 
neurons that describe features of an elephant are active.  That being 
said, the example above only deals with sensory information and ob-
ject recognition, which largely stems from it. The cortex has neurons 
that encode other things – movement, goals, predictions and so on. 

The question people most frequently ask me about the brain 
is whether it’s true that we only use 10% of our brain at any given 
time. The SDR concept provides an explanation – sure, we only have 
a certain percentage of neurons active at the same time. But if we had 
ALL neurons active at the same time – all meaning would be lost. 
We would see all of the colors and hear all of the sounds at the same 
time and would have an epileptic fit. But is it possible to improve 
our intelligence by having, say, 30% more neurons active than we 
normally do? Yes and no. I imagine that it would feel a lot like being 
on LSD – you would see more patterns, but there is no guarantee that 
the patterns you see exist in the world outside your head.

With that out of the way, we can proceed with our examina-
tion of how the cortex actually works.



3 

Classic View of Neurons

The picture of the cortex painted so far is tidy. There are re-
gions that have functions, they are arranged in a hierarchical order, 
and information flows neatly between them up and down the hierar-
chy. This is a neat diagram:

Unfortunately, that’s not what the cortex looks like. The cor-
tex looks like this:

Low-level single sense regions

High-level multisensory region
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Figure 4 – Image of the Cortex
(Forest of synthetic pyramidal dendrites grown using Cajal’s laws of neuronal branching by 

Hermann Cuntz CC-BY-2.5 https://creativecommons.org/licenses/by/2.5/ Original - http://journals.
plos.org/ploscompbiol/article?id=10.1371/image.pcbi.v06.i08)

And when we try to create a map of how the different regions 
of the cortex are connected with each other and with other parts of 
the brain, it looks like this:

Figure 5 – Network Diagrams of the Brain
(Dorsal and lateral views of the connectivity backbone of human brain. Labels indicating 

anatomical subregions are placed at their respective centers of mass. Nodes (individual ROIs) are coded 
according to strength and edges are coded according to connection weight by Hagmann P, Cammoun L, 
Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns CC-BY-3.0 https://creativecommons.org/licenses/
by/3.0/deed.en Original - https://commons.wikimedia.org/wiki/File:Network_representation_of_
brain_connectivity.JPG)
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There are many different maps like this. There is no agree-
ment on how to divide the brain into parts, or which of those parts 
are connected (what connection weight means “connected”?). More-
over, cortical regions are not the discrete entities computer scientists 
would like them to be. It is just a lot of neuronsxi intertwined togeth-
er like shown above.

There are different types of neurons, although there is no 
agreement on how many types there are, or even on how to divide 
neurons into types. People have tried to classify neurons by the genes 
they express, the cortical layer their cell body is in, and even their 
shape. One distinction is obvious and discrete, though, which is that 
some neurons are excitatory, while others are inhibitory. When ex-
citatory neurons fire, they make other neurons fire. When inhibi-
tory neurons fire, they prevent other neurons from firing. The bi-
ological difference between these two types of neurons is the type 
of neurotransmitter, or signaling molecule, that they use. Excitatory 
neurons primarily use a neurotransmitter called glutamate, while 
inhibitory neurons use other neurotransmitters, like the one called 
GABAxii. About 80% of neurons in the cortex are excitatory, while 
20% are inhibitory. Moreover, the inhibitory neurons are a lot more 
diverse than excitatory neurons, whereas most excitatory neurons 
look very much like each otherxiii. It follows that to understand the 
cortex, one would have to understand what excitatory neurons do, 
given their prevalence. 

xi	  There are also glia cells, but information processing doesn’t seem to be their 
main function. Glia cells provide nutrition and other auxiliary services to neurons.
xii	  There are other excitatory and inhibitory neurotransmitters, but these are by far 
the most prevalent.
xiii	  The exception is stellate cells.
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This is what an excitatory neuron in the cortex looks like13:

Figure 6 – Excitatory Neuron in the Cortex
Adapted from Kasevich RS, LaBerge D (2011) Theory of Electric Resonance in the Neocorti-

cal Apical Dendrite. PLoS ONE 6(8): e23412. https://doi.org/10.1371/journal.pone.0023412)

In real brains, of course, neurons are three-dimensional, so 
this neuron would look a little bit like a pyramid; hence they are 
frequently called “pyramidal neurons.” Each pyramidal neuronxiv is 
unique, but they all share a few characteristics. First, they have a cell 
body called a soma. From the cell body, dendrites protrude. They 
look like tree branches - dendrite means “treelike” in Greek. On each 
dendrite, there are many synapses – entities that connect this neuron 
to other neurons. Synapses can be chemical or electric. Chemical 
synapses send molecules from one neuron to another. These mole-
cules, known as neurotransmitters, increase the charge of the recip-
ient neuron. Electric synapses work as any electric connection does. 
This book considers only chemical synapses, which is a common ap-

xiv	  Unless otherwise noted, hereafter the word “neuron” is used to talk about pyra-
midal cortical neurons, all of which are excitatory.

Tuft dendrites

Apical dendrite

Soma
Basal dendrites



SERGEY ALEXASHENKO28

proach in neuroscience (though not necessarily a correct one)xv. The 
long thing that looks like a stem protruding upwards from the cell 
body is known as the apical dendrite. The dendrites that branch out 
from the cell body are called basal dendrites. The dendrites at the top 
of the apical dendrite are called tuft dendrites.

The apical dendrite can end in different layers, depending on 
which layer the cell body is located in. This relationship is quite strict 
and persists across the cortex. Layer 6 neurons send their apical den-
drites to Layer 4; Layer 5 neurons send their apical dendrites to Lay-
er 1, etc. The apical dendrites of excitatory cells always go upwards 
(towards the lower-numbered layers, or the skull) from the cell body. 
A neuron’s tuft dendrites spread out around the end of the apical 
dendrite in the layer that it ends in.

From the bottom of the neuron protrudes the axon, the neu-
ron’s output link (not pictured). A neuron’s axon is what connects to 
other neurons’ dendrites with synapses. Technically, each synapse 
is a combination of an output (presynaptic) part on an axon and an 
input (postsynaptic) part on a dendrite. Unlike dendrites, which in 
cortical excitatory neurons have a similar pattern (a bunch of them 
near the soma and some branching out at the top of the apical den-
drite), axons even of neighboring neurons can have wildly varying 
shapes14. 

Axons frequently extend over long distances. Sometimes 
they go to higher or lower levels of the cortical hierarchy. Other 
times they go to the same part of the cortex in the opposing hemi-
sphere (called the contralateral cortex). They can extend to subcor-

xv	  We don’t know what electrical synapses do, so at this point adding them to the-
ories increases complexity without increasing the amount of information communicated. 
There is a slightly more detailed discussion of electrical synapses in chapter 8.
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tical structures, too. Like the apical dendrite, axonal targets are also 
specific by layer. For example, axons from layer 4 neurons generally 
go to layer 3. Axons from neurons located in layers 2/3 generally 
go to layer 5, etc. However, axons from the same layer in the same 
part of the cortex can have vastly different destinations. Chapter 5 
explains in detail how the layers and axonal targets work together.

Another trait that all excitatory neurons have in common is 
that they spike (also known as firing, also known as action potential, 
also known as nerve impulse). When multiple excitatory neurons 
that are connected to a given neuron by synapses fire, they make the 
cell body of that neuron electrically charged. The more connected 
neurons fire together, the higher is the charge of the cell body. If 
the cell body’s charge passes a certain threshold, the neuron itself 
spikes. That means that a signal spreads down the axon rapidly and 
activates output synapses, thus sending signals to other neurons. In 
a way a, neuron can be thought of as a leaky bucket balancing on an 
edge. Water keeps coming in – if a lot of it comes at once, the bucket 
turns over and spills into other buckets. But some water is naturally 
dripping out without overturning the bucket. So, if a neuron receives 
inputs separated by long periods of time, it won’t fire – the inputs 
have to be somewhat concurrent.

Firing is the prevalent method of information transmission 
in the brain. Moreover, there is broad agreement that the basic func-
tion of a pyramidal neuron is pattern recognition. A neuron fires 
when it recognizes a pattern in the firing of other neurons around 
it. This explains some of the universality of the cortex – no neuron 
“cares” whether it’s recognizing a pattern in visual or auditory data. 
It just fires when many neurons connected to it fire at the same time. 
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That allows for the aforementioned common cortical algorithm. Re-
call the ferret who had his brain rewired. The neurons in the part 
of its cortex that used to be auditory do exactly the same thing now 
that they are connected to its eyes – they fire when they recognize 
patterns in the firing of neurons connected to them.

A good question to ask at this point is how neurons pick 
which other neurons they should connect to. To some extent, this 
is determined genetically. As mentioned, there are clear rules about 
where certain types of neurons send their apical dendrites and ax-
ons. These rules are based on which layer the neuron is located in, as 
well as where in the cortex it lives. Moreover, neurons that share the 
same progenitor cell are likely to be connected - that allows nearby 
neurons to create local microstructures. 

However, the most interesting part of neuronal connectivi-
ty is what scientists call “experience-dependent plasticity.” It means 
that as organisms encounter new information in the world, neurons 
form new synapses. There is a general method that most neurosci-
entists accept to be true: a neuron forms synapses with neurons that 
fire at the same time as it does. This rule, frequently described as 
“fire together, wire together,” is known as Hebbian learning. If we 
pause to think about the cortex as a whole, this rule explains a lot of 
our thinking processes. Remembering that two things happened at 
the same time is something humans are very good at. For example, 
when you commit a certain scene that is important to you to mem-
ory – a marriage proposal or a college graduation—you are likely to 
remember details that are not strictly relevant to the experience, but 
that happened at the same time, like what you had for lunch that day. 

Emotional saliency is often the factor that makes you com-
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mit scenes to memory. This is responsible for a few “bugs” in human 
thinking. One example is the belief that when you think of some-
body and then they instantly call you, some higher powers are at 
work. The reality is far more boring; you think of dozens of peo-
ple per day, but you don’t remember every instance of thinking of 
somebody. However, when it coincides with them reaching out to 
you, you react emotionally and store this moment in your memory. 
Thus, in your long-term memory, there are a disproportionately high 
number of such instances.

A phrase that is frequently used to describe the operation of 
the neocortex is “associative memory.” It is enabled by the Hebbian 
learning rule of “fire together, wire together.” Recall that the neocor-
tex evolved on top of other parts of the brain – ones that are respon-
sible for hunger, fear, and happiness, as well as complex sensors like 
eyes and ears. The cortex learns relationships between the various 
sensory inputs and the states of subcortical structures. It remembers 
that chocolate is delicious, that barbed wire hurts, and that certain 
music makes you sad. All of these mechanics are enabled by Hebbian 
learning.

The action potential mechanic was a terribly exciting discov-
ery. In 1943, McCulloch and Pitts came up with a theoretical model 
of a neuron that is still the basis (with some changes) of most ma-
chine learning technologies today15. A general form of it looks like 
this:
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Figure 7 – Model of an Artificial Neuron
(Artificial Model Neuron by Chrislb CC-BY-3.0 https://creativecommons.org/licenses/by-

sa/3.0/ Original - https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png )

This model is remarkably simple. Every neuron has a bunch 
of inputs. Each input has some weight ascribed to itxvi. At every time 
step, all of the inputs that are active (which is meant to represent 
neurons firing) sum up their weights. If the sum exceeds some ac-
tivation threshold, the neuron fires. If it doesn’t, the neuron doesn’t 
fire. Hebbian learning is used - if two linked neurons fire together, 
the synaptic weight is increased. 

 Sixty years later, this is still essentially the model that most 
AI projects usexvii. One important computational feature of this 
model is that as the number of neurons increases, the number of 
links between them increases exponentially. It is not computation-
ally feasible (nor will it be anytime soon) to create models with bil-

xvi	  Weights can be negative, allowing modeling of inhibitory neurons.
xvii	  Bruno Olshausen does a great job at explaining the evolution of computer 
science models of neurons here: https://youtu.be/WSzDPfCpcYM
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lions of artificial neurons all of which can connect to one another. 
Programmers deal with this by dividing the neurons into “layers.” 
A layer might have thousands of artificial neurons, and the layers 
are arranged hierarchically. The terminology here is a bit confusing. 
Deep learning layers are not modelled after layers of the neocortex, 
but the same word is used to describe different concepts. In deep 
learning, “layer” simply means a discrete chunk of neurons, while in 
the neocortex each of the six layers has unique features.

Neuroscientists, however, did not stay content with the Mc-
Culloch-Pitts model for long. It lacks certain features of neurons. 
One such feature is that neurons, unlike computers, don’t have 
“timesteps.” They operate in continuous time. Hence, neuroscientists 
came up with models that incorporate time. Hodgkin and Huxley 
won a Nobel Prize in 1963 for coming up with an action potential 
model in continuous time16. A more recent version of it, which is 
widely used today, is called the “leaky integrate-and fire” model16. Its 
premise is simple: inputs to a neuron boost its voltage, which other-
wise slowly dissipates over time. However, if a threshold is reached 
at a given point in time, the neuron fires. 

This model, also, is too simplistic when compared to actu-
al neurons. Even the most casual observer of neurons immediate-
ly notices that neurons have branches, which none of these models 
have. The adherents of these models respond that branches are sim-
ply a biological necessity and possess no computational capabilities. 
Hence, branches can be described simply as cables (the theory is 
called “passive cable theory”). The further away the synapse is from 
the soma, the further the electrical impulse has to travel. Since mem-
branes have some resistance, the further away a synapse is from the 
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soma, the more the input has to be “discounted” for the action po-
tential calculation. Therefore, the theory states, the branches can be 
abstracted away, as the concept of “synaptic weights” can capture the 
computational meaning of the location of each synapse. 

This view is also wrong. Recent discoveries have shown that 
dendritic branches do in fact possess computational capabilities, 
which requires of us a new model of how neurons process informa-
tion. 



4

New Insights into Neurons

John Von Neumann had one of the most annoying qualities a 
human can have: he was generally right about things. As he lay dying 
in 1957, he was writing a book about how the brain processes infor-
mation – The Computer and the Brain. He had very little neural data. 
He had no powerful computers or the Internet. But, in his book, he 
wrote the following phrase:

“It may well be that certain nerve pulse combinations will 
stimulate a given neuron not simply by virtue of their number but 
also by virtue of the spatial relations of the synapse to which they 
arrive. That is, one may have to face situations in which there are, say, 
hundreds of synapses on a single nerve cell, and the combinations 
of stimulations on these that are effective (that generate a response 
pulse in the last-mentioned neuron) are characterized not only by 
their number but also by their coverage of certain special regions on 
that neuron (on its body or on its dendrite system), by the spatial re-
lations of such regions to each other, and by even more complicated 
quantitative and geometrical relationships that might be relevant.”17

He was completely right. And yet, it took decades to confirm 
his idea, which has been completely ignored in both neuroscience 
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and AI for a long time. In 2000, a team lead by Jackie Schiller pub-
lished a paper in Nature called “NMDA spikes in basal dendrites of 
cortical pyramidal neurons”18. They used a combination of new (at 
the time) experimental techniques to see what happens when neu-
rons receive varying levels of input at a single point on a basal den-
drite. The results were nothing short of astonishingxviii. It turns out 
that basal dendrites have their own spikes. Up to a point, as you in-
crease the number of inputs on a specific point of a dendritic branch, 
the inputs are summed linearly, just as the passive cable theory would 
suggest. However, at some point, once a certain threshold is reached, 
there is a spike in the local voltage.

That spike in dendrites resembles a neuronal spike – inputs 
are summed until they reach a threshold, which triggers a spike. Ad-
ditional inputs do not significantly increase the magnitude of the 
response beyond the spike amplitude.

Why is that astonishing? First of all, it directly disproves the 
passive cable theory. If dendrites were but passive cables, they would 
sum inputs linearly. It is even more curious that this spiking mech-
anism is almost exactly what McCulloch and Pitts, and the gener-
ations of neuroscientists after them, thought to be the function of 
the whole neuron. It turns out that a single dendritic branch of a 
biological neuron can perform a computation equivalent to that of 
an artificial neuron. That raises the question - what are entire neu-
rons in the brain actually capable of? This chapter strives to answer 
that question, but first some more features of NMDA spikes need 
mentioningxix. 
xviii	  I hope you forgive me the use of this cliché. Many things about the brain have 
been called astonishing, fascinating and so on, but this particular paper was largely re-
sponsible for my writing this book.
xix	  For reference, NMDA means N-methyl-D-aspartate. That is a class of receptors 
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The number of synapses that need to be activated to trig-
ger an NMDA spike varies between cell types, the proximity of the 
branch to the soma, etc. Most importantly, though, NMDA spike 
thresholds are not discrete – they stretch out in space and time. 10 
inputs to the same point on a dendritic branch trigger an NMDA 
spike, but 20 inputs are required if they are distributed along the 
length of the dendrite19. Similarly, if the inputs are clustered in time, 
fewer are required to trigger an NMDA spike than if they are spaced 
apart in time – not unlike the leaky integrate and fire model con-
ceived for a whole neuron.

Moreover, recent nearby NMDA spikes help trigger new 
ones. That means that if normally 10 synaptic inputs are needed to 
trigger an NMDA spike, a recent nearby NMDA spike can lower that 
threshold to 8 synaptic inputs. This feature, referred to as cooper-
ativity19, is extremely powerful. While a single NMDA spike is not 
enough to trigger an action potential, multiple NMDA spikes can. 
Thus, recent NMDA spikes helping to trigger new NMDA spikes 
on the same dendritic branch is a feature that helps clustered inputs 
trigger action potentials. It is important to note that cooperativity 
only works within a dendritic branch. An NMDA spike in a branch 
does not lower the threshold for NMDA spikes in a nearby but un-
connected (except through the soma, of course) branch of the same 
neuron. That means that a dendrite, not a neuron, is a computational 
unit.

We have since learned a lot more about the NMDA spikes – 
that they are present in most excitatory neurons in the cortex, that 
they occur both in basal and tuft dendrites, etc. But the main conse-
in excitatory cortical neurons. “NMDA spikes” can simply be thought of as a name for 
dendritic spikes for the purpose of this book.
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quence of NMDA spikes is enormous - dendrites recognize sequenc-
es!

In a paper called “Dendritic Discrimination of Temporal In-
put Sequences in Cortical Neurons,” Tiago Branco, Beverley A. Clark 
and Michael Hausser used the same experimental technique to show 
that if you activate the same synapses in a fixed period of time but in 
a different order you can drastically change the probability of a neu-
ron firing based on those inputs20. 

The reason for this is NMDA spikes. When you spread out 
in time two inputs to synapses that are close to each other on a den-
dritic branch, you may dip below the threshold for an NMDA spike. 
Moreover, even if you get one NMDA spike but further inputs are on 
a different branch, cooperativity doesn’t come into play, so further 
NMDA spikes are less likely, and the neuron is less likely to fire.

The Branco/Clark/Hausser study showed neurons are more 
likely to fire when inputs arrive in a sequence approaching the soma, 
rather than when they arrive in a sequence moving further away 
from the soma. That makes sense – impulses arriving far away from 
the soma take more time to travel to the soma, so if impulses arrive 
on a dendritic branch in an order approaching the soma, they will 
arrive in a synchronized fashion, thus making peak voltage higher 
and increasing the probability of the neuron firing. 

Another study found an interesting feature of NMDA spikes 
on different parts of dendritic branches. The threshold for initiating 
a spike increases 5-fold from the tips of dendritic branches to parts 
of them close to the soma. But the effect of the spike on the electrical 
charge of the soma increases 7-fold in the same direction19. In other 
word, spikes that are close to the soma are a lot harder to trigger, but 
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have a stronger effect on the cell body.  Moreover, temporal sum-
mation increases as you go along the dendrite away from the soma 
– inputs that are close to the soma have a stronger effect when they 
are synchronized, but inputs on the tips of dendrites can be summed 
up without loss over relatively long periods of time21. 

To illustrate how all of this works, here is a hypothetical ex-
ample. “Johnny” is a neuron, whose job is to fire when you finish 
your drink (and there is such a neuron in your brain!) That neuron 
would integrate information coming in from many sensory modal-
ities.

Figure 8 – Johnny The Neuron
(Adapted from OpenStax CC-BY 4.0 https://creativecommons.org/licenses/by/4.0/ 
Original -https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface)
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At point 1 Johnny receives inputs from other neurons whose 
job is to fire when there is something cold in your right hand (a glass 
of iced water in this case). At point 2 it receives inputs from neu-
rons that fire when your lips are feeling a straw. These inputs ar-
rive constantly, as your lips keep continuously feeling the straw, and 
your hand is constantly feeling the glass. However, that input is not 
enough to make Johnny fire. But when it receives input at point 3 – 
from neurons firing that detect the sound you hear when you start 
sucking air through a straw— Johnny fires. It is important to note 
that if Johnny receives input at point 3 first, and then inputs at points 
2 and 1, it won’t fire. That’s because if you hear the sound of air com-
ing through a straw but don’t hold a drink in your hand, it’s likely 
that it’s not you but somebody else who has finished theirs. Recall the 
thresholds from the previous paragraph – if there were no NMDA 
spikes at points 1 and 2, cooperativity would not come into play, and 
the threshold for an NMDA spike at point 3 would not be reached. 

Neurons’ branches provide a built-in mechanism for han-
dling the variability of sequences in the real world. For example, if 
you are holding the drink in your left hand – Johnny will receive 
input at point 1b, which is similar to 1 (and, thus, located on an ad-
jacent branch) but corresponds to your left hand.

Moreover, an entirely different basal branch can detect you 
finishing your drink in a different way, such as finishing a hot cup of 
tea that you hold in both hands. In that scenario, point 4 would cor-
respond to input from your holding something hot in your hands, 
point 5 would correspond to input from your lips feeling the hot 
liquid, and point 6 would correspond to input that you receive from 
feeling the change in temperature in your mouth when tea is no lon-
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ger coming in.
So, individual neurons can discriminate between sequenc-

es. That is a powerful and beautiful idea, mainly because it suggests 
that a single discrete element of the cortex, the excitatory neuron, 
performs the same function that the cortex does as a whole – se-
quence memory. There is a certain elegance in that. Moreover, we 
now know how memories are physically stored in the brain - it 
turns out they are stored in the three-dimensional branching pat-
terns of neurons. Time in the neural storage of sequence memory 
is physically represented by the distance of a synapse on a dendrit-
ic branch from the soma. Different variants of similar sequenc-
es are represented by branching patterns. Each neuron’s shape is a 
physical manifestation of a unique memory. Here is a generalized 
form of what a neuron’s dendritic branching pattern represents:
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Figure 9 – Role of the Basal Dendrites in Excitatory Neurons
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Note that sequence memory is the domain of basal dendrites 
– dendrites that are connected to the soma. Tuft dendrites, dendrites 
that are connected to the apical dendrite, do something interesting 
as well. Inputs to tuft dendrites can also produce NMDA spikes. A 
single NMDA spike and a little bit of additional input (or two or 
more NMDA spikes) sent to the tuft dendrites of a neuron result in 
a calcium spike23. Calcium spikes do not trigger action potentials on 
their own, but when combined with sufficient input to the basal part 
of the neuron, they cause the neuron to burst – that is, to spike 2-4 
times at a frequency of around 200 Hzxx,24. 

Basal Input
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Calcium Spike

Yes No

Neuron
Bursts

Neuron
Spikes

No
Output

No
Output

Figure 10 – Neuron Responses to Different Combinations of Input

In simpler terms, if a neuron receives input only to the bottom 
part, it fires once. If it receives input only to the top part, it doesn’t 
fire. If it receives input to both parts, it fires 2-4 times rapidly (called 
BAC firing or bursting). Matt Larkum, a prominent researcher of 
the neocortex, suggested in a 2013 opinion piece that the calcium 
spikes provide a mechanism for one of the most important cortical 
xx	  Layer 2/3 neurons do not appear to produce bursts longer than 2 spikes.
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functions25. Recall that information in the neocortex flows two ways: 
feedforwardxxi and feedback (up and down the hierarchy). Calcium 
spikes and BAC firing enable individual neurons to associate feed-
forward and feedback information. In other words, predictions from 
higher cortical areas come in to the top of the neuron. Sensory data 
comes in to the bottom.
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Figure 11 - Inputs to Different Parts of an Excitatory Neuron 

 If the sensory input matches what is predicted, the neuron 
bursts. If the inputs to the bottom part of the neuron aren’t predicted, 

xxi	  Frequently “feed-forward” is used in literature. 
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the neuron spikes just once. Conceptually, bursts are a lot more like-
ly than individual action potentials to trigger NMDA spikes in the 
targets of the bursting neuron as you get a lot of quick input in suc-
cession to the same dendrites (and this has been shown experimen-
tally)26. Thus, bursts are more likely to propagate through the cortex 
than individual action potentials. That makes sense in that predicted 
inputs are likely to be more reliable in information processing. To 
sum it up, individual neurons are able not only to learn sequences, 
but also to test if the sequences they detect have been predicted. Pre-
dicted inputs propagate through the cortex using bursting. 

Since we know that the location of input on a neuron’s den-
dritic tree matters, we are also interested in how neurons pick where 
exactly to connect to other neurons. Xu et al. published a study in 
2009 that conclusively showed that exposure to new stimuli leads to 
rapid formation of dendritic spinesxxii,5. That means that when ex-
posed to new information, neurons create new synapses. Over time, 
new dendritic spines disappear, unless the stimuli that caused them 
to appear are repeated, or if the stimuli coincide with neuromodu-
lation (emotional responses). Sometimes new dendritic spines cause 
a pair of neurons to connect in more than one location27. Pruning, 
however, leaves only the most efficient synapse in terms of timing, 
thus providing a mechanism by which people improve at activities 
that require precise timing with training.

A question now appears – how does a dendrite choose which 
synapses remain and which are “deleted”? Most likely, it is through a 
mechanism, which is similar to Hebbian learning as described ear-
lier, but with a dendritic spike instead of an action potential being 
xxii	  Spines can be thought of as physical manifestations of synapses for the purpos-
es of this book.
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required at the target neuron to form/strengthen a synapse. Den-
dritic spikes provide the location for the synapse. It has been shown 
that dendritic spikes participate in a form of strengthening synapses 
that does not require action potentials28. Moreover, a recent study by 
Kwon and Sabatini showed that nearby glutamate release (recall that 
glutamate is an excitatory neurotransmitter, which causes dendritic 
spikes) triggers spine formation on dendrites29. Basically, that means 
that if a dendritic branch “feels” a nearby axon firing at the same 
time as the branch is experiencing a dendritic spike, it will form a 
synapse with that axon.

Inhibitory neurons are far less studied than excitatory neu-
rons, which makes sense given that they are fewer in number and 
far more diverse. It is not yet entirely clear how inhibitory neurons 
play into information processing on the dendritic level. However, 
we do know that inhibitory neurons can target (and effectively “turn 
off ”) specific dendritic branches30 as well as calcium spike initiation 
zones31. This means that inhibitory neurons provide mechanisms for 
temporarily disregarding parts of certain sequences, as well as cer-
tain predictions. A general rule of thumb is that if an inhibitory neu-
ron targets a dendrite far from the soma, it increases the threshold 
necessary for a dendritic spike. If an inhibitory neuron targets the 
soma, it reduces the amplitude of the spike32. 

One function of inhibitory neurons is that they support reg-
ular spiking3. The mechanisms of dendritic spikes and BAC firing 
work on the timescale of milliseconds. They are useful for rapid re-
sponses to novel stimuli. When you first see a zebra, BAC firing will 
be used to help you recognize that it is a zebra (more on how later). 
Brains, however, frequently have to work on longer timescales – most 
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zebras (and other objects) persist in sensory domains for seconds or 
longer. For that, neurons utilize regular spiking. A neuron can spike 
continually at a certain frequency (30 Hz, for example) for a long 
time. If you continue looking at a zebra for a while, the neurons that 
encode the concept of zebra are going to continue spiking regularly 
until you decide to look at something else. Excitatory neurons on 
their own don’t have any mechanisms to maintain regular spiking, 
but inhibitory neurons do34. Some inhibitory neurons fire regularly 
without inputs. That can help excitatory neurons maintain frequen-
cy by only allowing them to spike during certain time windows and 
inhibiting them during others. That way excitatory neurons get syn-
chronized. 

The main criticism of the idea of neurons being able to dis-
criminate between precisely timed sequences is that synapses are 
stochastic. Indeed, synapses are notoriously unreliable. They may 
work, or they may not, in any given case. They can also spontaneous-
ly discharge. We don’t know why; maybe they are just too small35,xxiii. 
Traditionally, scientists have thought that since synapses are unreli-
able, spikes are unreliable. If spikes are unreliable, neurons are im-
precise. Hence, we can only look at firing rates – a neuron’s output is 
its average firing rate over time. 

An important distinction must be made here. The firing rate 
of neurons is frequently very important, like in the zebra example 
above. However, only taking the average firing rate of a neuron is 
not enough to understand what it is doing. Neurons burst when they 
identify new information and fire repeatedly when the information 
persists. Hence, we must look at both bursts of neurons and their 
xxiii	  See Schrodinger’s What is Life for a detailed examination of how size affects 
reliability in biology.



CORTICAL CIRCUITRY 47

regular spiking.
What of the unreliable synapses, then? How are cortical neu-

rons able to learn precisely timed sequences when their inputs are 
unreliable? It turns out that brains have evolved a way to deal with 
this fact of life that allows them to process information precisely.

This way is spikes – both NMDA spikes and full-neuron 
spikes. Spikes have the same peak voltage, even if you apply extra in-
put after you reach the initiation threshold. In live brains, most den-
dritic branches and neurons are likely to be set up to receive more 
input than is the absolute minimum to trigger spikes. Thus, if some 
of the synapses don’t work every time, the spikes still happen and the 
output of a neuron is largely unaffected by these failures. Naturally, 
that requires some degree of redundancy. There are neurons in the 
brain that do very similar things to each other. It allows for some 
neat things – neurons can further specialize when they need to, and 
having redundancies allows brains to handle neuronal death without 
losing much information—but mostly redundancies are important 
in dealing with stochastic synapses. 



5

Functions of Cortical Layers

The power of the cortex lies in three things: the sheer num-
ber of neurons, the computational power of each individual neuron, 
and what is known as the “canonical structure” or the “common al-
gorithm” – the way neurons in different layers are linked in a com-
plex pattern.

There is a saying often attributed to Albert Einstein: “Every-
thing should be made as simple as possible, but not simpler.” Unfor-
tunately, and as may be expected, in the case of the cortex, things 
can only be made so simple. There are six layers, each with different 
cell types, dozens of types of connections between them and a huge 
number of cortical areas, which may or may not be discrete. There 
is no soundbite that can explain how the cortex works. It is a com-
mon problem with biology – there are frequently huge numbers of 
elements in a system. Luckily, we can infer general principles, which 
can make any particular element easier to understand.

In the case of the cortex, any general principle has to explain 
its laminar structure and the connections between various layers. 
While different parts of the cortex can have certain layers that are 
thicker or thinner than usual, the one thing that remains the same 
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everywhere in the cortex is the connectivity pattern between the 
layers. Layer 4 always sendsxxiv outputs to layers 2/3, for example. 
Hence, we now have network diagrams of the layers of the cortex. 
They look like thisxxv:

 

Figure 12 – Connectivity between Cortical Layers
Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience37, © 2015

While such diagrams are woefully incomplete without inhib-
itory cells, they do offer a glimpse of the general structure of the 
cortex.  However, there is very little theory about how this structure 
translates into function. This chapter introduces some theories, as 
well as ways to test them. They are not necessarily right, but they are 
definitely “truthifiable”xxvi. 

Layer 4 is the input layer of the neocortex. In primary senso-
ry regions it is the first cortical layer to receive input from the thal-
amus, which transmits sensory information from sensory organs 
to the cortex38. In higher regions of the hierarchy layer 4 receives 

xxiv	  When I say a layer does something, I mean the excitatory neurons in that layer. 
Unless otherwise specified, “layer X neurons” refers to excitatory neurons in that layer.
xxv	  This is a diagram, not the diagram. Many of the distinctions made here are a 
product of human judgment. 
xxvi	  See chapter 19 of The Lightness of Being by Frank Wilczek for a discussion of 
truthification.
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feedforward input from lower regions39. Neurons in all layers con-
nect to other neurons in the same layer; however layer 4 neurons do 
that a lot more than neurons in other layers40. In this way, they find 
patterns in broad slices of data. Consider, for example the device on 
which you are reading this book – whether digital or paper. Its top 
edge extends across a large portion of your visual field. Because of 
that, neurons that identify the left side of it and neurons that identify 
the right side of it can be pretty far apart. But because layer 4 neurons 
are so interconnected, they can recognize that it’s the same edge.

It has long been known that thalamic axons, which carry 
sensory information to the cortex, branch out in layers 6, and, to 
an extent, 5, as they enter the cortex. Recent experiments show that 
even if layer 4 is disabled, information still flows into the cortex from 
the thalamus through these branches going to layers 5 and 641. The 
reason for having two feedforward pathways is attention. Attention 
is a process of selecting useful information from the environment. 
It is by nature an inhibitory process – it works by filtering out irrel-
evant information42. Consider this paragraph. Attention causes the 
higher regions in the cortical hierarchy to receive more visual in-
formation from the part of your visual field where this paragraph is 
located than from other parts of your visual field. Although there are 
no “pixels” in the brain, high definition (HD) vs standard definition 
(SD) are useful concepts when thinking about attention. The part of 
your sensory input that you are paying attention to is transmitted in 
HD, while the rest of it is transmitted in SD. Hence, more neurons 
are firing to figure out the HD part of the sensory input than the SD 
part of it. Two separate inhibitory processes are required for such 
processing. The first one downsamples the HD information from the 
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eyes to SD. The second one picks out the part of input in HD that you 
are paying attention to and disinhibits that part of the input so you 
get it in the original HD. 

In the cortex layer 4 receives sensory input, and the inhibi-
tory neurons in the layer reduce that input to SD. Basal dendrites of 
layer 6 neurons receive cortical feedback43 from higher-order cortical 
areas44, which determines where to direct attention. Then the layer 
6 neurons disinhibit (inhibit the inhibitory cells of) the parts of the 
sensory information that you want in HD by sending information to 
inhibitory cells in the thalamus45. Layer 6 neurons extend their apical 
dendrites to layer 4 to match the HD and the SD streams46. Their tuft 
dendrites in layer 4 receive feedforward informationxxvii. They match 
the information about where the object that attention should be paid 
to is located in the sensory field, and they send information to the 
thalamus. The thalamus is a central organ in attention47, and the in-
formation input from Layer 6 allows it to direct attention to where 
the higher cortical regions want it. 

It is known that there are different types of corticothalamic 
cells (aka cortical neurons that send information to the thalamus) in 
layer 646.  They send projections to different parts of the thalamus. 
Many parts of the thalamus are poorly studied and the structure is 
outside the scope of this book. It suffices to say that there are two 
types of attention – frequently referred to as “top-down” and “bot-
tom-up”48, although both of them involve feedback mechanisms. 
Top-down attention allows mammals to focus on specific objects. 
The previous paragraphs talked about this kind of attention. Bot-

xxvii	  In this, layer 6 is an exception. Other layers receive feedforward input in their 
basal dendrites and feedback inputs in their tuft dendrites. Such an arrangement is neces-
sary for attention to work.
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tom-up attention makes sure that new and unexpected stimuli catch 
the animal’s attention. A classic example of this type of attention 
is the classroom door – nobody pays much attention to it, until it 
does something unpredicted and opens. This type of attention works 
slightly differently – as long as inputs are perfectly predicted, they 
are inhibited. Thus, if a sensory input suddenly becomes unpredict-
ed, it is disinhibited compared to the predicted inputs. The precise 
mechanism of this is not yet clear, but it is likely that both attention 
mechanisms rely heavily on layer 6. The different types of layer 6 
cells that project to the thalamus probably correspond to the differ-
ent types of attention. 

In many scientific papers, layers 2 and 3 are bundled togeth-
er. The reason for that is not theoretical but experimental – many ex-
periments are performed in ways that do not allow for distinguishing 
between them. In this theory, however, these layers have separate, if 
highly intertwined, functions.

Layer 3 neurons receive feedforward input to their basal den-
drites from layer 449. Hence, layer 3 searches for sequences in the 
spiking of layer 4 neurons. This allows it to track information that 
persists in your sensory input, even if that input is affecting different 
layer 4 neurons over time. An example of this in the auditory cor-
tex might be that while layer 4 neurons respond to individual fre-
quencies, like musical notes, layer 3 neurons respond to sequences 
of these notes. Apart from the obvious benefits of sequence learning, 
layer 3 neurons help increase sparsity as you go up the hierarchy. 
If you are looking at a tree, there are many more neurons firing to 
describe the visual features of the tree in the visual cortex than there 
are neurons in the higher cortical regions firing to describe the con-
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cept of a tree. Such an increase in sparsity is necessary, as it allows 
the top of the hierarchy to focus on the most important information, 
which is conceptual. 

Layer 3 neurons’ apical dendrites extend into layer 1. There 
they receive feedback input from higher levels of the hierarchy50. 
This allows them to differentiate between predicted and unpredicted 
patterns, through the BAC-firing, or bursting, mechanism. As de-
scribed earlier, a neuron only bursts when its sensory input is both 
new and predicted. Then, if the input persists for a while (as most 
sensory inputs do in the real world), the neuron transitions to spik-
ing regularly51.  

Some inhibitory neurons, called Martinotti cells, respond to 
bursts of excitatory neurons52. They then inhibit nearby excitatory 
neurons. This is a winner-take-all mechanism that in layer 3 is re-
sponsible for discrete object identification.  This deserves an exam-
ple – let’s say that you are at home and you know that your wife 
is also at home. The layer 3 neurons responsible for identifying her 
will be getting predictive input to their tuft dendrites because of 
that knowledge. When you actually see her, many layer 3 neurons 
that describe women will receive input to their basal dendrites and 
spike. The neurons that are also receiving the predictive tuft input 
will burst. This will trigger nearby Martinotti cells to fire and inhibit 
neurons adjacent to the ones bursting. Martinotti cells make sure 
that nearby neurons to those receiving prediction are silenced and 
that your wife is easily identified as herself, and not as a woman who 
looks like her. After she is identified, the neurons describing her will 
keep spiking regularly. I predict that layer 3 neurons stop firing when 
they stop receiving feedforward sensory input.
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 What happens if a layer 3 neuron receives input that is not 
predicted? This is the case of bottom-up attention. It means that 
there is an object out there in the world that needs identification. 
The neuron spikes, sending information up the hierarchy. As soon 
as a prediction (which can be also thought of as an identification) is 
generated, it is sent by feedback to the tuft dendrites of the layer 3 
neuron. Then it bursts, and, if the input persists, transitions to reg-
ular spiking. Such an event is useful for the cortex to remember, for 
it is then making a correct prediction or identification. From this 
stems another prediction of this theory: there exists a separate plas-
ticity mechanism in the cortex based on bursts.

Layer 3 neurons send information to a few different places. 
The first one is feedforward – layer 3 neurons project to layer 4 neu-
rons in a higher level of the hierarchy53. The second one is layer 5 in 
the same region – more on that later54. The third place they project 
to is layer 2 in the same region37.

Layer 2 neurons receive local input from layer 3 and layer 4 
neurons40, spike regularly, and send feedback projections down the 
cortical hierarchy. I predict that they do not burst because of their 
role, which I contend to be short-term memory. Layer 2 neurons 
keep information in mind that is not directly evoked by the sensory 
input at each exact moment. Consider the following scenario – an 
office worker just looked up from his screen to see a motivational 
poster. He is now looking back at his screen. Layer 4 and layer 3 
neurons that describe the poster have stopped firing. However, it is 
likely that at some point in the near future he will see the same poster 
again. Hence, it makes sense for some of the neurons that describe 
the poster to keep firing That way, if the worker looks at the poster 
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again, the cortex will be able to identify the object quickly without 
involving the top of the hierarchy. I suggest that those neurons are 
located in layer 2. Every time layer 3 neurons identify an object, they 
start regular spiking in both layer 3 and layer 2 neurons. While layer 
3 neurons stop firing when the object leaves the sensory field, layer 2 
neurons keep firing. This allows the object to be quickly identified if 
it is encountered again. 

There is likely a decay function – the layer 2 neurons’ firing 
rate decreases over time. Otherwise, you would predict all of the ob-
jects you have ever seen, which is unsustainable. If layer 2 neurons 
receive input, however, their firing rate is likely to increase. It is likely 
that both feedforward and feedback input can bump up the firing 
rate. In less complex terms – if you hear your dog barking, the layer 2 
neurons that describe “dog” increase their firing rate. Also, thinking 
about your dog, or even just being aware that it’s in the same room, 
will boost the layer 2 neurons’ firing rate. How does it work on the 
level of neurons? Layer 2 neurons’ tuft dendrites are close to the cell 
bodies (because their tuft dendrites are in layer 1, which is adjacent 
to layer 2); as such, layer 2 neurons do not have pronounced apical 
dendrites55. I predict that NMDA spikes from their tuft dendrites 
have the same effect on their cell bodies as NMDA spikes from basal 
dendrites, without the involvement of calcium spikes. Finally, there 
probably exists a feedback mechanism to stop layer 2 neurons from 
firing. A part of the hippocampus, which is at the top of cortical hi-
erarchy, stores maps of the environment. When you move from one 
distinct place to another (e.g. when you go outside), a new map has 
to “load”. Such a change is likely to send waves of information down 
the cortical hierarchy to stop layer 2 neurons, which were describing 
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information about the inside space that you left, from firing. Other 
layer 2 neurons will start firing as you receive the sensory input from 
the place you just moved to.

Memories of recently encountered objects are not the only 
type of information that layer 2 neurons are responsible for.  They 
are responsible for predictions in general – it’s just that memories of 
recently encountered objects are really good predictions. Predictions 
that are not recent memories originate high up in the hierarchy and 
are transmitted down the hierarchy via layer 2 neurons projecting to 
layer 2 neurons in lower hierarchical regions56. Recall how descrip-
tions of objects become sparser as you ascend the hierarchy. Simi-
larly, as feedback flows down the hierarchy in layer 2, the neurons’ 
sparsity decreases. A higher cortical region only needs to predict 
“dog,” while a visual region in the middle of the hierarchy needs to 
predict visual information about a dog from all angles of view, which 
involves considerably larger numbers of neurons.

Layer 2 neurons send output to tuft dendrites of layer 3 neu-
rons. That is intuitive – that’s where feedback predictions come in to 
layer 3. They also send output to layer 5 neurons54. 

Layer 5 is the output layer of the neocortex57. Neurons in that 
layer extend axons to various subcortical structures, which is how 
they influence behavior. For example, layer 5 neurons in the visual 
cortex send information to the superior colliculus, which is the part 
of the brain responsible for controlling gaze by coordinating eye and 
head movements58. Layer 5 neurons in the somatosensory and mo-
tor parts of the cortex send information to the brainstem to control 
movement59. Higher up in the hierarchy, layer 5 cells can extend ax-
ons to all sorts of subcortical structures. For example, some layer 5 
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neurons in the prefrontal cortex send information to the Raphe Nu-
clei, which is a serotonin center in the brain heavily involved in reg-
ulation of emotional states60. Most such projections are outside the 
scope of this book, but it is worth remarking that from the perspec-
tive of the cortex there is no big difference between altering mood 
and moving muscles. The cortex is an associative learning structure, 
and its job is to make predictions about information inputs by taking 
into account its previous actions, no matter whether those are phys-
ical or emotional.

As the output layer, layer 5 participates in action selection. 
For that reason, it receives sensory information, information about 
prior movements, goals, and predictions. Layer 5 neurons receive 
inputs from all layers of the cortex40. Layer 3 sends information to 
the basal dendrites of neurons in layer 5. That information is about 
identified objects in the sensory field. Layer 2 neurons from a higher 
region in the hierarchy connect to the tuft dendrites of layer 5. Why 
is that? Why should predictions about sensory objects activate tuft 
dendrites of output neurons? It turns out that layer 2 neurons encode 
something else in addition to information about recently encoun-
tered objects, and that something else is goals. If you think about 
how goals need to be treated by the neocortex, you’ll realize they 
need to persist in the absence of sensory input. That is what layer 2 
neurons are perfectly suited for.  For example, let’s say that a sprint-
er is waiting for the gun to fire to start running. Layer 5 neurons 
responsible for beginning to run would receive continuous input 
to their tuft dendrites from layer 2 neurons that encode the goal of 
sprinting. Then, as soon as the auditory cortex layer 3 neurons send 
input to the same layer 5 neurons, they burst and the athlete begins 
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running. Interestingly enough, because those layer 5 neurons are not 
at the top of the hierarchy but somewhere in the middle of it, profes-
sional sprinters begin running before they are conscious of hearing 
the sound61. Beginner runners, however, don’t have that connection 
from auditory cortex neurons to motor cortex layer 5 neurons. For 
them to identify what to do based on the sound of the gun firing, the 
involvement of higher level cortical areas is necessary. As such, more 
time is required for them to begin running.

Layer 5 neurons can fire regularly, as well as burst62. That 
makes sense as behaviors like walking need to be maintained for 
a long time. There are also Martinotti cells in layer 552 that are re-
sponsible for discrete behavior selection, much like those in layer 3 
responsible for discrete object recognition.  For example, you don’t 
want to say half of “Hello” and half of “Good day”xxviii, even if both 
are applicable; you want to say one specific phrase.

Some layer 5 neurons send feedback information to lower 
regions in the hierarchy. Behaviors are arranged just as hierarchically 
as objects in our brain. A high-level behavior like opening the door 
after you hear a doorbell involves many separate behaviors of lesser 
complexity like walking and reaching and grabbing, and a myriad of 
variations in the movements of actual muscles. Much like the feed-
back flow in layer 2, feedback flow in layer 5 decreases sparsity as 
you go down the hierarchy. An interesting feature of both layer 2 and 
layer 5 feedback connections is that they arrive to layer 1 of the lower 
cortical region. David Hubel, one of the most influential neurosci-
entists ever, once described layer 1 of the neocortex as its “crowning 
mystery”63. 

xxviii	  Unless you do, in which case, Heday to you too!
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Now that we know about BAC firing and how it enables 
matching feedback and feedforward information streams, the pur-
pose of layer 1 is clear – that’s where layer 2, 3 and 5 neurons receive 
feedback information to their tuft dendrites from farther up the hi-
erarchy. 

The information that layer 5 neurons send to tuft dendrites 
of layer 3 helps the cortex make sense of sensorimotor transitions. 
Knowing how you move your head helps predict what you’re going 
to see. The connection from layer 5 to layer 2 is a bit trickier. Layer 5 
sends information about actions to layer 2 where it persists for a bit. 
This means that recent actions are stored in the cortex, allowing you 
to learn consequences which do not immediately follow actions – on 
the cortical timescale, there is quite a gap between you saying some-
thing and hearing the response. 

There are also layer 5 neurons that send information feedfor-
ward to the basal dendrites of layer 4 in the higher cortical region. 
While lower regions in the hierarchy primarily learn only patterns in 
sensory data, higher regions learn mostly sensorimotor transitions. 
That makes sense, given that most of the changes in our sensory in-
put are caused by our movements. A reasonable question is – isn’t 
this what the layer 5 feedback connection to the tuft dendrites of 
layer 3 neurons is for? Almost, but not quite. The feedback connec-
tion to layer 3 neurons makes predictions about lower level features 
– like that moving your eyes will shift a table that you currently see 
to a different part of your visual field. The layer 5 feedforward con-
nection makes predictions about higher level features – like moving 
your eyes will cause you to see a piano, which you currently aren’t 
able to see. Since maps of our environments are stored very high in 
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the cortical hierarchy, information about movements has to go up 
the hierarchy to predict which objects will be encountered. From 
there, information about these objects propagates down the hierar-
chy through the layer 2 feedback pathway to make predictions about 
the distinct sensory features of these objects. 

It also should be noted that some layer 6 apical dendrites ter-
minate in layer 5. Moreover, layer 5 neurons sometimes project to 
layer 646. It is likely that these links have to do with coordinating 
the movement of sensors and the internal mechanics of attention 
in the brain. If you want to pay attention to somebody’s face, you 
need to both turn towards them and utilize the attentional mechan-
ics explained earlier. Since your turning changes the other person’s 
position in your visual field, layers 5 and 6 need to coordinate their 
activities to make sure that attentional mechanics apply to the part 
of the visual field where the person is going to be after you turn, not 
before you do.

In summary, layer 4 neurons identify patterns across a 
wide range of the sensory field. Layer 3 neurons identify discrete 
objects in spatiotemporal patterns of layer 4 neurons’ firing. Lay-
er 2 neurons make sure that information not immediately present 
in the sensory field persists in the cortex. Layer 5 neurons select 
actions. Layer 6 neurons work in tandem with layer 4 neurons and 
the thalamus to implement attention.

This view is undoubtedly somewhat wrong. However, at pres-
ent, neuroscience offers no compelling theories about what the dif-
ferent cortical layers do. As such, I think that this view is less wrong 
than other theoretical descriptions of the neocortex, which is why I 
thought this book was worth writing. This chapter introduced the-
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ories about what the different pieces of the neocortex do. The next 
chapter puts them together in an example to show how they cooper-
ate on a task in a living brain.



6 

Cortex in Action

The capabilities of the cortex come not only from those of 
individual neurons or the laminar structure, but also from its hierar-
chy and its sheer computational power. The following example is set 
to illustrate how the hierarchy works together to accomplish a task 
that, while trivial for humans, is nearly impossible for even the most 
advanced robots today – getting food from the fridge.  Note that this 
example by no means describes all of the neural circuitry involved in 
that process – just a slice of it that shows how cortical regions use the 
connections between different layers in the hierarchy.

In this example, the behavior starts with a goal: hunger. The 
feeling of hunger in the brain originates in a subcortical structure 
called the hypothalamus, which gets information directly from your 
stomach67. The hypothalamus then relates the information about 
hunger to a region of the cortex called the insular cortex68. This is not 
the only place in the brain the hypothalamus projects to, however. It 
also projects to the thalamus, the amygdala, secondary motor cortex, 
and other places68. The insular cortex is important here because it’s 
the part of the cortex known to be implicated in hunger69. 
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The insular cortex has reciprocal connectionsxxix with both 
the sensory parts of the cortex and the prefrontal cortex that sits near 
the top of the cortical hierarchy68. In fact, this is a common theme of 
the cortex – information about goals from subcortical structures is 
first sent to the middle parts of the cortical hierarchy. It is then inte-
grated into the feedforward information stream in the cortex – layer 
3 of the insular cortex transmits information about hunger to layer 4 
in the prefrontal cortex (PFC). This allows the PFC to make predic-
tions about goals (e.g. I’m going to be hungry later).  It also allows 
the PFC to see all of the current goals and make decisions based on 
themxxx. 

The inputs about goals to the PFC are not discrete, but scalar. 
In your brain, there is a scale of how hungry you are. In this case, 
the scale is likely represented by how many neurons that describe 
hunger are firing in the insular cortex. Thus, the method of choos-
ing an action is something like neurons voting – the goal that sends 
the strongest input (the most spikes) to the PFC wins, and the PFC 
decides to embark on a course of action to achieve that goal. Other 
goals are temporarily not acted upon. In terms of layers, the PFC is 
a bit different than most of the cortex. While most cortical regions 
only have information about goals encoded in layer 2, the PFC deals 
with goals in every layer. It receives information about all the differ-
ent motivations in the feedforward stream that enters layer 4. Layer 
3 is where the goals compete and the ones to act on now are chosen. 
These are sent to layers 2 and 5, from where they propagate down 
the hierarchy.

xxix	  Most feedforward/feedback connections in the cortex are reciprocal.
xxx	  Subcortical structures, notably the basal ganglia, are heavily involved in deci-
sion-making.
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 The PFC also sends information from layer 3, which in this 
example is “I should go get some food” to the hippocampusxxxi,70. The 
hippocampus sits at the very top of the cortical hierarchy. The hip-
pocampus stores short-term memories, maps of places, information 
about recently encountered objects, events and so on71,72. Note that 
the hippocampus only stores very basic representations of objects; 
their full descriptions are stored in the sensory parts of the cortex. 
In this example, the hippocampus has stored information that there 
is an apple in the fridge, which would satisfy the goal of hunger. 
The hippocampus has two parts called ventral and dorsal. Not co-
incidentally, there are two parallel ascending pathways in the visual 
cortex, also called ventral and dorsal. People also frequently refer to 
them as the “What” (ventral) and the “Where” (dorsal) streams73,xxxii. 
The What stream performs object recognition. Hence, in the ventral 
part of the hippocampus, there is a memory of an apple. The Where 
stream creates a 3D map of the environment. Thus, in the dorsal part 
of the hippocampus, there is a map of how to get to the fridgexxxiii. In 
our perception, objects are inextricably linked to their location in 
space. It is not known at what point the brain integrates information 
about their location – it may be in the hippocampus, somewhere 
lower in the hierarchy, in the claustrum, or all of the above.

Regardless, in this case the hippocampus sends information 
about the apple and the location of the fridge back to the PFC. They 
are now concrete goals propagating down the cortical hierarchy 
through layers 2 and 5. The first part of getting the apple involves 
moving to the fridge. To do this a human utilizes their motor cortex 
xxxi	  Through the midline thalamus.
xxxii	  There is likely a similar division in the auditory cortex.
xxxiii	  The What stream from the PFC to the hippocampus goes through the perirhi-
nal cortex, and the Where stream goes through the parahippocampal cortex.
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and visual cortex extensively. The motor cortex receives input from 
the PFC74 in its feedback pathway (PFC’s layer 2 projecting to the 
motor cortex’s layer 1). That information is largely about the goal 
of getting to the fridge. The motor cortex also receives information 
about the current body position from the somatosensory75 cortex. 
Interestingly enough, that information does not come via a feedfor-
ward pathway. The primary motor cortex does not have a traditional 
layer 4 because the information there is dependent not on sensors 
but on movements, which are caused by the cortex76. Hence, the 
somatosensory cortex projects to layers 2/3, 5 and 6 in the motor 
cortex. Then the motor cortex integrates information about body 
position with the feedback information of where it should get to and 
plans a route. Layer 5 neurons of the primary motor cortex fire when 
a behavior is selected and project to subcortical structures that han-
dle movement77.

For navigation, the visual cortex mostly utilizes the “Where” 
pathway. Incidentally, an influential paper once proposed to rename 
it to the “How” pathway77. Recall that the cortex evolved on top of 
a brain that already handled action selection. Thus, the analysis of 
visual information became heavily integrated into this mechanism 
via the Where/How pathway. Information analysis for the purposes 
of identification evolved a separate pathway – the What pathwayxxxiv. 

There are a few things happening in the Where pathway as 
part of our quest for the apple. A region of the cortex called the Fron-
tal Eye Field (FEF) directs targeted eye movement78. It receives infor-
mation via the layer 2 feedback pathway that the human is current-
ly interested in the fridge.  It also receives feedforward information 
xxxiv	  It is curious that in reptiles and insects action selection works without the What 
pathway.



SERGEY ALEXASHENKO66

from visual regions MST and VIP that encode the environment in 
head-centered space79. By matching the desired object and the po-
sition of the head, FEF makes the decision on where to direct eye 
movement. It sends out the motor command via layer 5, as well as 
the attentional command via layer 6 to respectively look at and focus 
on the fridge. The information about the eye movement is also sent 
out both feedforward and feedback – feedforward from layer 5 to 
layer 4 in the next higher hierarchical regions and feedback to layer 
2 of lower hierarchical regions. The higher regions predict what new 
objects are going to be seen, and the lower regions use the feedback 
to adjust the position of objects due to eye movement.

The What stream of the neocortex receives feedback predic-
tions about both eye movements and the objects that it expects to 
encounter. The higher regions of the cortical hierarchy have a pretty 
good idea about what objects are located between the desk and the 
fridge and they send feedback down the layer 2 pathway. As men-
tioned in the previous chapter, these predictions decrease in sparsity 
as they go down the hierarchy. In V4, which is a cortical region in 
the middle of the What stream, high level features of objects such 
as colors and large shapes are identified. In V1, which is the region 
of the visual cortex most closely connected to the retina, low level 
visual features like edges are predicted – and there are a lot more of 
those than there are large blobs of color. In general, feedback in the 
visual cortex (and in other parts of the cortex) is at least as important 
as feedforward information. Because of this, some scientists call the 
cortex’s method of information encoding “predictive coding”10. As a 
side note – even though at this point your back is turned to the desk, 
layer 2 neurons describing the visual features of objects on your desk 
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are still spiking regularly. They are still good predictions, in case you 
turn around. 

Note that the regions of the visual cortex mentioned above 
are only examples of what the visual cortex does. The structure has 
many regions – here are two examples of maps of the visual cortex53. 
There are many other competing maps. In the cortical hierarchy, 
many regions connect to regions of the same level. Such connections 
have not been mentioned before, but they go through the regular 
feedforward and feedback pathways.

Figure 13 – Two Maps of the Visual Cortex
(Adapted from Anatomy of hierarchy: Feedforward and feedback pathways in macaque 

visual cortex under CC-BY-3.0 https://creativecommons.org/licenses/by/3.0/ Original - https://www.
ncbi.nlm.nih.gov/pmc/?term=23983048%5BPMID%5D&report=imagesdocsum)

Eventually the motor cortex and the Where stream in the vi-
sual cortex, together with the help of the maps in the hippocampus, 
are going to get you to the fridge. When the PFC discovers that you 
are within reaching distance of the fridge, a new set of behaviors will 
be required. Reaching and grabbing are the domain of the posterior 
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parietal cortex – a structure most prominent in primates, since they 
are the best at reaching and grabbing things among mammals.

The posterior parietal cortex (PPC) is near the top of the 
Where stream, and thus receives feedforward visual information 
about the map of the environment. It also receives sensorimotor and 
vestibular information80 so that it knows the location of the hand. All 
of this information is feedforward, so it enters layer 4 of the PPC. It 
also receives information about the reaching target from the PFC – 
in this case, the fridge door handle. The PPC matches the feedback 
and the feedforward information in its layer 5 cells, which then burst 
to start the reaching behavior. 

The pattern of matching feedforward and feedback informa-
tion continues to repeat in the cortex. It is the primary operation of 
each cortical region. It is an incredibly powerful operation that is the 
center of the “common cortical algorithm”. It is versatile and allows 
for pattern recognition and action selection in any part of the cortex.

The PPC is similarly responsible for opening the door. Once 
you open the fridge, there’s a surprise – your wife has bought gro-
ceries! This is where the What stream of the visual cortex shines. 
Visual information about unpredicted items is matched with the 
feedback of items that are usually found in fridges to identify objects 
like yogurt and beer. However, if there is an unpredicted object in 
the fridge, like a very unhappy cat, information about it flows all the 
way up the hierarchy so it can be identified. That’s why surprising 
information captures a disproportionate amount of our attention.

The apple is also identified. Attention in all parts of the visual 
cortex is directed to it (assuming that there is no cat in the fridge) 
through the top-down mechanism originating in the PFC. The PPC 
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plans a reaching and grabbing motion. Here is a good example of 
single-neuron mechanics coming into play. Consider closing your 
fingers on an apple. You need to change the behavior from closing 
your fist to carrying the apple as soon as you grab it. There are neu-
rons in your somatosensory cortex that respond to your touching 
the apple exactly as Johnny from chapter 4 responded to your finish-
ing your drink. However, Johnny was not localized to a specific lay-
er. In this example, neurons in layer 3 of the somatosensory cortex 
are the ones to respond, identifying that you are now touching the 
apple. Layer 5 neurons, meanwhile, are receiving input to their tuft 
dendrites telling them that as soon as you touch the apple you should 
bring it to your mouth. When they receive input from the aforemen-
tioned layer 3 neurons, they burst to begin that motion.

You bite the apple and eventually it enters your stomach. The 
hypothalamus receives information that there is food in your stom-
ach and you are no longer as hungryxxxv. The PFC and subcortical 
structures pick other things to do.

Decision making almost always includes neuromodulators 
(generated in the aforementioned subcortical structures). They are 
the “value function” of the cortex. Thus, the predictions of the apple 
also trigger reward circuits in the brain, to make sure they win the 
competition for attention the next time.

Another mechanic omitted so far is learning. In this example, 
you learned that there is yogurt and beer in the fridge. That learning 
started with identifying the objects in the What pathway of the visual 
cortex. This information is carried via the feedforward pathway to 

xxxv	  Actually, it is likely that even before you know that you are no longer hungry 
through the stomach, the cortex makes a prediction that soon you will not be hungry 
anymore because you’ve eaten and, consequently, it inhibits hunger.
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the PFC, the perirhinal cortex and the ventral hippocampus where it 
is stored. Neuromodulators are involved here also – they make sure 
that you remember what food there is from only seeing it once, since 
it is associated with reward. Most of the other learning in the cortex 
takes repetition.

The thalamus has also been conspicuously absent from this 
chapter. Its method of operation remains unclear, although we know 
it relays sensory information to the cortex and is important in atten-
tion. Consciousness has been largely ignored as well. The one thing 
we know is that you are not conscious of the information in the pri-
mary sensory parts of the cortex, like V1. Consciousness appears 
somewhere higher up in the hierarchy and involves the claustrum.

Finally, an attentive reader might have noticed an incon-
sistency. Earlier this book mentioned that cortical regions aren’t 
necessarily discrete entities, but this chapter treated them as such. 
Unfortunately, there is no way around this yet. The types of studies 
conducted so far mention specific cortical regions, and our under-
standing of the cortex can only be as good as the studies we have. 
When we have cell-level connectomes of the cortex (and algorithms 
to analyze them, for it is impossible to manually analyze trillions of 
connections) we can make better subdivisions.

Hopefully, this example was helpful in understanding the 
cortex. The next two chapters discuss how we can use what we 
learned in building better AI. If you are only interested in biology, 
feel free to skip them.



7

Using Insights into the 
Neocortex in Algorithms

Modern neural networks can do remarkable things. They can 
recognize spoken words, drive cars, beat humans in many games, 
and predict which news stories will interest which people. In some 
respects, however, they are far behind living animals. They cannot 
move well through forests, play volleyball, or make movies81. The 
biggest gap between existing neural networks and brains is that neu-
ral networks cannot learn new skills – each network can only do the 
thing it’s designed to do. A neural network that recognizes cats in 
pictures cannot play Go, for example. Mammals, on the other hand, 
can acquire a large variety of new skills. While many improvements 
can be made with current technology, to truly bridge this gap, we 
will need to create completely new types of neural networks, inspired 
by the neurons and the architecture of the neocortex. This chapter 
discusses how the new ideas about neurons and the neocortex that 
have been presented in this book can be used to create better neural 
networks. 

Many improvements are available across the board – better 
artificial neurons, cortex-inspired network structures, and proxies 
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for other parts of the brain. However, the first element that warrants 
a discussion is architecture. Certain features of computers that we 
take for granted are actually results of architectural choices made 
decades ago:

1.	 Computers are built to work extremely reliably. 
If you perform a calculation on your phone 1000 
times, you are going to get exactly the same answer 
every time. Computers extensively use error correc-
tion codes to achieve that. 

2.	 Computers consume a lot of power. A desktop com-
puter can consume 1000 watts of power. An adult 
human brain consumes only around 100 watts. 

3.	 Computers utilize a low number of very fast cores. 
A typical CPU may have 2-8 cores. In recent years, 
computers have begun making extensive use of 
parallelization – using hundreds or thousands of 
computing cores at once, especially in processing 
graphics. But the way this parallelization is set up, 
all of the cores are highly dependent on each other. 
Frequently, until all cores finish a certain job, none 
of them can start a new job. 

In sum, computers are highly reliable, consume a lot of pow-
er, and their parallelization is highly interdependent. Brains are not 
like that. As mentioned above, synapses are unreliable. Brains use 
large numbers of neurons and spike thresholds to overcome this. 
They consume little power because they utilize spiking and sparse 
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representations. Brains take advantage of massively parallel pro-
cessing units (neurons) that operate in an asynchronous fashion. 
That means that while neurons depend on other neurons firing, and 
sometimes are synchronized, no neuron “waits” on another neuron 
to finish its processing. Each neuron operates on its own clock, so 
to speak (although, as mentioned before, inhibitory neurons can 
help synchronize excitatory neurons). Ideally, new hardware would 
be needed to create next-gen neural networks, and the next chapter 
talks about some efforts in that direction. But to know what hard-
ware would run artificial neurons the best, we would first need to 
know what those artificial neurons are.  This chapter describes Arti-
ficial Branching Neurons (ABNs) – a new type of artificial neurons. 
The word branching is used in their name because branches serve 
three very important purposes:

1.	 They increase the computational power of neurons.
2.	 They provide a mechanism for handling variable se-

quences.
3.	 They introduce a limit on the number of synapses a 

brain can have.

The third reason deserves some attention. As mentioned in 
Chapter 3, as you increase the number of artificial neurons in a mod-
el, the number of potential synapses increases exponentially. That’s 
not scalable. However, if neurons can only form synapses with their 
dendrites, or branches, they can only form synapses with neurons 
whose axons are close to their branches. That introduces a limit 
on scaling and allows us to create networks the size of the human 
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brainxxxvi. 
There are three ways to model branches. The first one is pure-

ly logical. In this way, the dendritic tree is modelled only as a set 
of bifurcations, without such attributes as length or direction. The 
second one is spatial. In this way branches exist in a modelled space, 
and every branch can be thought of as a line segment. The third 
way is “real 3d spatial”. In this model, branches have width and two 
branches cannot exist in the same space, much like in the real world. 
Video games use a type of software called colliders to make sure that 
such overlaps don’t happen – they are fairly computationally inten-
sive. While it is possible that branch width has a computational role 
in biological neurons through electrodynamics, that may be just as 
accurately modelled by synapse weight. Colliders offer no obvious 
computational benefit. Length, however, is important – as we know, 
the length of a dendrite helps neurons deal with time. Hence, ABNs 
follow the second approach – spatial – and use line segments as their 
branches.

The laminar structure of the neocortex is a huge component 
of its computational power, and, more importantly, its versatility. It 
would be wise to incorporate a similar structure into networks of 
ABNs. As the last few chapters showed, neurons in different layers of 
the cortex have slightly different mechanics. Therefore, ABNs will be 
different depending on the layer they are located in. Inhibitory cells 
do not need to be modeled – in code they can exist as mechanics of 
excitatory cellsxxxvii.

Regardless of the layer, all of the ABNs have similar den-
xxxvi	  A neuron typically has thousands of synapses. If a neuron could be connected 
to any other neuron, it could have tens of billions of synapses.
xxxvii	  It is likely that as we understand them better, inhibitory cells will reveal func-
tionality that will require us to model them – but we’re not there yet.
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drites. All dendrites can generate dendritic spikes, modeled after 
NMDA spikes. Here is an algorithmic description of what a dendrit-
ic segment would compute in a timestepxxxviii:

for s in synapses:

if s.active:

	 dendrite.potential=dendrite.potential+s.weight

	 for d in nearby_dendrites:

		  d.potential=d.potential+s.weight*power(dendrite,d)

if dendrite.potential>dendrite.threshold:

	 dendrite.trigger_NMDA_spike()

	 dendrite.potential=0

if dendrite.potential>=0:

	 dendrite.potential=dendrite.potential-DECAY

This looks a lot like existing artificial neurons. The only ex-
ception is that an active synapse increases the potential not only of 
the dendritic segment where its located, but also that of the nearby 
and connected dendritic segments. The power function computes 
how much effect a synapse on one dendrite has on another by mul-
tiplying the distance between the segments by some negative coef-
ficient constant. The interesting bit comes in the trigger_NMDA_
spike() method:

a      neuron.potential= neuron.potential+SPIKE_STRENGTH/dendrite.distance

b       for d in dendrite.nearby_dendrites:

c              d.threshold=nearby_dendrites.threshold-coop_power(dendrite,d)

xxxviii	  This book uses discrete timesteps and simple thresholds to make it easier to 
read. Differential equations can also be used in implementations of ABNs.



SERGEY ALEXASHENKO76

d       for axon in nearby_axons:

                         if axon.fired_recently:

                                        if synapse(axon,dendrite) in synapses:

	                         synapse(axon,dendrite).weight+=W

	          else:

	                         synapses.add(synapse(axon,dendrite))

Line a shows the effect of an NMDA spike on the cell body. 
It is dependent on how far away the dendritic segment in question 
is from the cell body. Lines b and c implement NMDA spike coop-
erativity. An NMDA spike reduces the threshold for further NMDA 
spikes in adjacent dendritic segments. The coop_power function is 
a function similar to power that computes the effect of the coopera-
tivity of one dendritic segment on another based on their distance. 
The constants have to be chosen in such a way that distant dendritic 
spikes have a large proportion of their effect on the soma through 
cooperativity (and therefore through facilitating other dendritic 
spikes), while dendritic spikes that occur close to the soma directly 
increase the neuron’s electric potential on their own. On a separate 
thread, for every dendrite there is a function that allows for thresh-
olds to return to normal (it can be thought of as the decay of the 
cooperativity effect). It looks something like this:

while (dendrite.threshold<DEFAULT_THRESHOLD):

	 dendrite.threshold=dendrite.threshold+X

	 sleep(Y)

The learning algorithm starts on line d above. It states that 
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if an NMDA spike was preceded by a nearby axon firing, it should 
either strengthen the existing synapse with said axon or create a new 
one, if one doesn’t. Naturally, synapses need decay – otherwise every 
dendrite would be connected with every nearby axon eventually. The 
decay can be flat, like this:

for synapse in synapses:

	 synapse.weight=synapse.weight-SYNAPTIC_DECAY

	 if synapse.weight<0:

		  synapse.remove()

Or it can be contingent upon the strength of the synapse:

for synapse in synapses:

	 if synapse.weight<permanence_threshold:

		  synapse.weight=synapse.weight-SYNAPTIC_DECAY

	 if synapse.weight<0:

		  synapse.remove()

This choice is dictated by the application. In humans and 
animals the second mechanism is in play – some things are never 
forgotten, like that the sky is blue. But in some machine learning 
applications this need not be the case. 

Neurons in most layers also have tuft dendrites, which can 
initiate calcium spikes that lead to bursting. Their algorithmic im-
plementation is straightforward – an NMDA spike in one of the tuft 
dendrites sets a flag for the neuron that there has been a recent cal-
cium spike:
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if dendrite.zone = “tuft”:

	 neuron.recent_calcium_spike=true

This recent calcium spike is utilized in the code of the whole 
neuron. The neuron code goes like this:

if neuron.regularly_spiking==false:

	 if neuron.potential>neuron.threshold:

		  if neuron.recent_calcium_spike==true:

			   neuron.initiate_burst()

		  else:

			   neuron.initiate_spike(0)

else:

	 frequency=frequency+neuron.potential*M – FREQUENCY_DECAY

	 neuron.initiate_spike(frequency)

neuron.potential=neuron.potential-NEURONAL_DECAY

if frequency<FREQUENCY_THRESHOLD:

	 frequency=0

	 neuron.regularly_spiking=false

There are a few things happening here. First, there is a check 
whether the neuron is already spiking regularly. In real brains, it is 
implemented by inhibitory neurons. If the neuron isn’t regularly 
spiking, it checks if its potential is over the spike threshold. If there 
has been a recent calcium spike, the neuron bursts. If there hasn’t, it 
spikes.

If the neuron is firing regularly, however, the inputs are 
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summed up to increase the frequency of its firing. In real brains, that 
mechanism is handled by the regular spiking inhibitory cells. 

Note that this algorithm is the general form of an ABN neu-
ron. It is applicable to neurons in layers 3, 5 and 6. Layer 4 and layer 
2 neurons do not burst. There are no neurons in layer 1.

There are also some differences in the constants for neurons 
of different layers. For example, FREQUENCY_DECAY is much 
higher for layer 3 neurons than for layer 2 neurons. This difference 
allows for layer 2 neurons to persistently fire in the absence of senso-
ry input, while layer 3 neurons will stop firing when the input stops.

Chapter 5 posited that bursts initiate regular firing. In this al-
gorithmic representation, this happens in the initate_burst() method 
shown below:

initiate_spike()

sleep(Z)

initiate_spike()

sleep(Z)

initiate_spike()

neuron.regularly_spiking=true

frequency=starting_frequency

for neuron in nearby_neurons:

	 neuron.threshold=neuron.threshold+I

Note that only layer 3 and layer 5 have the competitive inhi-
bition part in the last two lines. Layer 6 is responsible for attention. 
Unlike action selection and object identification, where we want to 
select just one option, attention is somewhat elastic. We can pay at-
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tention to multiple input sources at once, even though that may pro-
duce diminishing returns at times. 

Furthermore, since the thalamus is not yet properly under-
stood, it cannot be implemented in code. Luckily, we know that layer 
6 is involved in attention, which is a disinhibitory mechanism in the 
feedforward stream. Hence, for the purpose of this implementation, 
layer 6 neurons can project to layer 4 neurons.

Since ABN neurons exist in three dimensions, their learn-
ing mechanisms have to incorporate growing branches. The mecha-
nism for that is homeostatic, meaning that a neuron must maintain 
a certain number of synapses. If the actual number drops below that 
threshold, the neuron forms new synapses with axons that fire close 
in time to the neuron’s dendritic spikes. This is similar to how bio-
logical neurons operate – they protract and retract dendritic spines 
all the time.

The first thing needed for this mechanism to work in code is 
the ability to form new synapses. The code for that is executed when 
an NMDA spike occurs in a dendrite:

if neuron.number_of_synapses<MAX_NUMBER_OF_SYNAPSES:

	 for axon in nearby_axons:

		  if axon.fired_recently:

			   form_synapse(axon, dendrite)

This code checks for axons that are near a dendritic segment 
after an NMDA spike occurs in that segment. If a nearby axon had 
fired before the NMDA spike, a synapse is formed. New branches 
are only formed if the number of synapses on a neuron falls signifi-
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cantly below the maximum number of synapses – to, say, 80% or so. 
This check occurs independently of the neuron firing (on a separate 
thread), with some regular frequency:

	
if neuron.number_of_synapses< MAX_NUMBER_OF_SYNAPSES*.8:

	 dendrite_to_extend=pick_random_dendrite ()

	 form_new_dendrite(dendrite_to_extend)

If the number of synapses falls below a threshold, a new den-
dritic branch is grown. The pick_random_dendrite method simply 
picks any branch with an endpoint that is not at maximum length 
yet. The form_new_dendrite (dendrite_to_extend) method is shown 
below:

new_dendrite=dendrite()

new_dendrite.starting_point=dendrite_to_extend.ending_point

new_dendrite.zone=dendrite_to_extend.zone

new_dendrite.direction=dendrite_to_extend.direction * dendrite_variation()

new_dendrite.ending_point= new_dendrite.starting_point + DEFAULT_DEN-

DRITE_LENGTH * new_dendrite.direction

new_dendrite.nearby_dendrites=[]

new_dendrite.nearby_dendrites.add(dendrite_to_extend)

dendrite_to_extend.nearby_dendrites.add(new_dendrite)

dendrite_to_extend.neuron.dendrites.add(new_dendrite)

This code extends an existing dendritic branch. The direction 
of the extension is the direction of the existing branch with some 
variability added through the dendrite_variation() function. If the 
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new branch does not form synapses after some period of time, it is 
retracted. 

Axons have a similar homeostatic mechanism, except they 
branch out more widely. To achieve that, they would use an axon_
variation() function, which produces larger variations than den-
drite_variation(). Speaking of axons – there is no need to model the 
entire 3D structure of an axon for ABNs. Real axons can be myelin-
ated – covered by an insulating layer of glia cells – along most their 
length, only allowing axons to form synapses close to the end of the 
axon. This allows for long-distance transmission that does not acti-
vate every neuron in between the neuron and its target. ABNs can 
only model the axon as its unmyelinated segment at its target (which 
is arborized, that is to say it branches out at the end). Note that some 
axons are unmyelinated – those are mainly useful for local transmis-
sion. Those would need to be modelled in their entirety.

In brains, about 80% of all connections within the cortex are 
local (within the same cortical region), while 20% are long-distance 
connections between different cortical regions82. This is a useful heu-
ristic for those building networks of ABNs.

The specific hierarchy of regions in an ABN network would 
depend on the application, and its computational requirements, sen-
sors and behavioral range. Nonetheless, a few guidelines are likely 
to be universally applicable. There should be single sense regions for 
each of the sensors. Multisensory regions should be created based 
on the correlations between the data that comes in through different 
sensors. Reward values and other modulators should come in the 
middle of the hierarchy. The complexity of the sensor determines the 
size of the sensory region; the complexity of the patterns in the data 
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determines the height of the hierarchy. In humans, the top of the 
hierarchy is the hippocampus, which helps store episodic memory 
and maps. A lot of applications would need that functionality, but 
since the hippocampus is not yet completely understood, a simpler 
solution can be utilized that would work for many machine learn-
ing applications. Layer 3 cells at the very top of the hierarchy can 
simply complete the loop by projecting only to layers 5 and 2 in the 
same region and nowhere else. It should be noted that there was a 
famous case of a person losing their hippocampus and still being 
able to learn new skills83. That state would still be a great improve-
ment on current generation AI. Episodic memory is important but 
not crucial at this point.

One important feature of the cortex that was described earlier 
is the dual feedforward streams – the What and the Where streams. 
It is curious how the separation between the two streams occurs – 
why do cortical regions with the same structure at the same level of 
the hierarchy, both of which receive information from the primary 
visual cortex, perform such different functions? How does one of 
them identify objects and one of them create maps? The difference 
is purely in the connectivity of these regions. The Where stream re-
ceives extensive information about the movement of the eyes and 
the head. Its job then is integrating visual information with informa-
tion about movement, which is basically putting objects on a map. 
The map itself comes via feedback from the hippocampus. The What 
stream, on the other hand, does not receive information about the 
movement of the sensors. It only receives two types of information: 
what the eyes currently see, and what objects have been seen earlier, 
which comes from feedback. Such an arrangement allows for object 
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identification. For computing purposes, this differentiation may be 
useful in many applications.

As far as neuromodulators go, there currently is no need to 
create separate artificial neurons for them. They can just be assigned 
as parameters for existing ABNs. Say that a predicted outcome has a 
negative reward value – the motor neurons leading to that outcome 
would be inhibited. If a predicted outcome has a positive value as-
sociated with it, associated actions are boosted. The way these pa-
rameters are assigned these values is simple: when something good 
happens, the active neurons get assigned a positive value. When 
something bad happens, the opposite occurs. Humans have a variety 
of neuromodulators that are responsible for different outcomes: hun-
ger, sex, fear, etc. Initially, ABNs can just use positive and negative 
reward values. However, more specific parameters, such as “Critical 
failure – do anything to avoid,” can also be assigned.

One feature of biological intelligence that helps it achieve im-
pressive outcomes is its ability to experiment. ABNs can do that too 
by having motor neurons spontaneously fire with some probabili-
ty. This mechanic introduces variability to actions, and makes ABN 
networks learn what actions yield the best outcomes.

One issue that has not been addressed so far in this chapter 
is threading. Unlike traditional neural networks, networks of ABNs 
do not need to operate in a synchronized fashion. Separate threads 
run for dendrites, neurons, and functions that are not dependent on 
immediate activity like growing new branches. It is not feasible in 
such a configuration for threads to be synchronized and dependent 
on each other. As a result, there is no “master clock” and no “net-
work time step” – real neurons run on their own clocks. An obvious 
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problem with such an approach is memory – wouldn’t memory locks 
create massive desynchronizations causing neurons that represent 
the same sensory input to fire at different times? The solution to this 
issue is simple, if unorthodox from the perspective of computer sci-
ence – it’s a laissez-faire approach to error handling. Let’s say that a 
dendrite thread is trying to see if a synapse is active, but the synaptic 
weight is currently being updated by a separate thread. The dendrite 
thread will not wait for the update to end, but will instead just report 
the synapse as not being active. This is the beauty of dendritic spikes 
– if the threshold for a spike is, say 7 active synapses, it does not mat-
ter if there are 11 or 12 synapses active at any given point – the spike 
still goes through. Hence, occasional “faulty synapses” would have 
no strong effect on the network. This is a feature of the neocortex, 
and, with “laissez-faire error handling”, it is a feature of networks of 
ABNs.
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Hardware for Next-Gen 
Neural Networks

Recently, a few articles appeared in the news about IBM cre-
ating a computer as powerful as a brain of the mouse84. IBM de-
veloped a state-of-the-art computer called TrueNorth that has 48 
million artificial neurons. Unfortunately, their neurons are closer to 
McCullogh and Pitts neurons than real biological neurons. They do 
not model dendritic spikes, calcium spikes, bursting and other com-
plex neuronal behaviors. This means that in terms of sheer compu-
tational power, the state of the art technology today is still orders of 
magnitude away from the simplest mammalian brains. But, as com-
puting power increases exponentially, we may yet see computers as 
powerful as brains within our lifetime.

IBM was right about something big, though: computers as 
powerful as the brain are not going to utilize the Von Neumann 
architecture that powers most modern computers. Von Neumann 
computers simply use too much power to be scaled to the size of a 
brain. An entirely new class of hardware will be developed for the 
next generation of brain-like computers. While it is not yet certain 
what that class will be, this chapter reviews the technologies that 
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look promising today.
The IBM TrueNorth computer is a chip, which runs pre-

trained neural networks (optimized for deep learning), while re-
quiring very little power. Such a chip would be incredibly useful for 
many commercial applications – low power speech recognition, for 
example – but gets us no closer to the brain. The brain constantly 
learns, which the IBM TrueNorth chip does notxxxix.

The Human Brain Project’s original goal was to build a com-
puter that simulates the entire human brain. They have not achieved 
that, but the project now works with several novel computing archi-
tectures. The first one is BrainScaleS85. BrainScaleS is a hybrid com-
puting system. Instead of representing information only as 1s and 
0s, BrainScaleS also represents information as physical quantities 
– voltage, current and charge. The analog computing elements are 
extremely efficient at modelling certain aspects of a neuron, such as 
membrane potential, while using very little power. When the spiking 
threshold is reached, the spike signal is transmitted digitally, which 
makes sense due to the binary nature of spikes. BrainScaleS neurons 
support such features of real neurons as bursting, regular spiking 
and spiking frequency changes. They implement dendritic spikes 
and plan to implement calcium spikes. The good thing about the 
BrainScaleS analog implementation is that dendritic spikes are easily 
implemented without greatly increasing the power budget. Anoth-
er helpful feature of the BrainScaleS system is that it runs at 10000 
times the speed of actual neurons. This is somewhat counteracted by 
the fact that the system requires millions of parameters to run and, 
consequently, configuring the system for an experiment can take a 
xxxix	  Even though the chip is optimized for “deep learning”, it only allows running 
pre-trained models. These models have to be trained on other computers.
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very long time86.
About 400 million BrainScaleS synapses fit on a silicon wafer, 

so 2.5 million wafers are needed to achieve the level of complexity of 
the human brain. That does not seem feasible at the moment. That 
being said, the system most accurately simulates biological neurons 
as we understand them todayxl. This allows running experiments 
that expand our understanding of networks of neurons in the brain.

Another architecture supported by the Human Brain Project 
is the SpiNNaker architecture. It involves taking many ARM cores 
and linking them together in a supercomputer. The advantage of the 
SpiNNaker system over traditional supercomputers is that it con-
sumes less power, as ARM cores are primarily developed for smart-
phones where power usage is an extremely important consideration. 
The advantage of the SpiNNaker system over BrainScaleS is that it is 
easily scalable. It does not, however, aim to model biologically realis-
tic neurons, at least not to the extent that BrainScaleS doesxli. 

SpiNNaker is similar to many projects that have been 
launched in the commercial space that use GPUs or TPUs. They gen-
erally have many more cores than CPUs and consume less power. 
None of these projects, however, are aiming to simulate real biologi-
cal neurons or the architecture of the cortex.

Some approaches eschew traditional digital computation al-
together. They are in their infancy, yet they seem promising. The first 
one is optical computing. Optical computing uses light instead of 
electricity. It can perform such operations as the Fourier transform 
and linear algebra operations quickly and in a massively parallel 
xl	  The limits of our understanding are discussed in the next chapter.
xli	  Both BrainScaleS and SpiNNaker allow researchers to use their systems for ex-
periments. You can find more information about how the system works and request access 
at neuromorphic.eu
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fashionxlii. It is not yet obvious how optical computing can be used 
for creating brain-like systems.

Quantum computing is at its infancy. It can loosely be divid-
ed into two groups – quantum annealing systems and a full digital 
quantum computer. Quantum annealing systems exist today and 
are not unlike the BrainScaleS system in that they utilize an ana-
log computational process. However, in the case of quantum an-
nealing, the analog component computes the global minimum of a 
given objective function. This computation may be very important 
in brain function. One of the leading theories about overall brain 
function describes it as a system the goal of which is to minimize its 
free energy (this is called the free-energy principle)87. Quantum an-
nealing could be extremely helpful in this computation. That being 
said, there is still an extremely wide gap of understanding between 
the free-energy principle as a principle, and the biological reality of 
neurons with their active dendrites. Moreover, quantum annealing 
is only a little bit beyond the proof of concept stage. To put it simply, 
it is possible that quantum annealing systems will help model brain-
like computers, but there is no immediate work to be done in this 
area – we are years, if not decades, away from beginning to build 
such systems. 

A full digital quantum computer is a fully programmable 
computer that uses qubits to reliably perform digital computation. 
No such computer exists today. It is unlikely that one will be built 
anytime soon. However, building such a computer would constitute, 
well, a quantum leap in computing. It would allow for full scale digi-
tal brains, but as of today, it remains only a speculation.

xlii	  See Optalysys for a more detailed explanation.
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Finally, biological computing is an interesting area. The term 
“biological computing” can refer to many things from programma-
ble genomes to linking brains together to form a supercomputer. 
Only the ones that are relevant to brain-like structures are men-
tioned here.

There are attempts to build small chips out of neurons88. It 
is an interesting concept but is unlikely to help us build a computer 
that has the power of a human brain. Another approach is to link 
together many animal brains into a network to perform computa-
tions89. Such an approach holds promise, but we are currently lim-
ited by brain-computer bandwidth. Modern brain-computer inter-
faces connect to hundreds of neurons at once. That is far too few 
for high-performance computing applications. DARPA’s NESD pro-
gram aims to record from a million neurons and stimulate one hun-
dred thousand of them – should it succeed, some version of using 
animal brains for computing purposes would become possible. The 
last biological computing idea worth mentioning utilizes synthetic 
biology, and would genetically program organisms to build nervous 
systems useful for specific applications. It also holds promise but we 
are nowhere near the understanding of genetics we would need to 
implement something like this.

There is another approach to building a brain-like computer 
that is worth mentioning: the one used by DARPA in its Cortical 
Processor program. It states that the first step to building a digital 
brain is understanding the algorithms of the cortex – only then can 
we build the hardware required for it. It makes sense that to design 
hardware to run an algorithm efficiently, it would be helpful to know 
what the algorithm is!
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In conclusion, there are many efforts aimed at building a 
computer with the power of a human brain today. The most like-
ly course of development for ABNs and other algorithms that aim 
to have more biologically-plausible neurons is to first test them on 
regular GPUs/TPUs and then implement them on a larger scale in a 
BrainScaleS-like digital/analog system.



9 

The Limits of 
Our Understanding

If the last chapter occasionally bordered on science fiction, 
this chapter deals with the harsh reality of the limits of our under-
standing of the brain. Despite some advances in figuring out the 
cortical algorithm, we could not model the brain today even if we 
had unlimited computing power. This chapter outlines the things we 
would need to work on understanding next.

The first one is inhibitory cells in the cortex. There is a huge 
diversity of  them90. We have not yet figured out how the different 
types of inhibitory neurons connect to each other and to excitatory 
neurons. Such a connectome is crucial for completing our under-
standing of the common cortical algorithm. This book presented a 
few conjectures as to what some of the inhibitory neurons might be 
necessary for, but such theories need to be confirmed. Neither this 
book, nor any other publication, offers a compelling theory of how 
inhibitory neurons work on the dendritic level. Learning algorithms 
for inhibitory neurons are also lacking.

The second thing that we need to learn more about is the 
deep layers of the cortex. Many papers divide layer 5 into layers A/B, 
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others divide layer 5 neurons into regularly spiking and intrinsically 
bursting, and still others classify layer 5 cells by size. It is entirely pos-
sible that information about goals is expressed in some of those cells. 
Layer 6 has an even greater number of cell types, many of which are 
connected to parts of the brain, like the thalamus, that we don’t un-
derstand very well. The thalamus is not a single sheet of neurons like 
a cortex, but a collection of distinctly separated parts called nuclei. 
Some nuclei are understood pretty well. For example, many nuclei 
receive sensory information and then send it to the primary sensory 
cortices. LGN and pulvinar do that for vision, ventral posterior and 
posterior medial nuclei do that for somatosensation, and the medial 
geniculate nucleus does that for hearing91. These are known as first 
order nuclei and are relatively well studied. However, the nuclei that 
receive inputs from cortical regions and send outputs to other corti-
cal regions are known as higher order nuclei, and they are not under-
stood well today. Higher order nuclei provide second pathways for 
cortico-cortical connections, but their role is unclear at this point. 
Given how tightly interwoven these nuclei are with the cortex, they 
are likely to play an important role in cortical functioning. Layer 6, 
in particular, cannot be understood without understanding the thal-
amus as well.

The hippocampus is actually understood pretty well (or so 
the people studying the hippocampus say). We know what the func-
tion of the organ is. We know all the different parts of it, and we have 
figured out the roles of the different cell types in it. That being said, 
we do not yet have a good algorithmic representation of the hippo-
campus. One of the reasons for that is that we do not yet have a good 
set of learning rules for the hippocampus. To obtain those, we need 
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to further study the hippocampal neurons at the level of dendrites 
and synapses. 

The claustrum is, perhaps, the most mysterious part of the 
brain (the word claustrum means “hidden away”). It is small - its 
volume is just 0.25% of the volume of the neocortex - yet it is highly 
interconnected with many parts of the neocortex. Furthermore, the 
claustrum seems to be strongly involved in consciousness, one of the 
most alluring concepts known to man. One bit of evidence for this is 
that if you implant an electrode into the claustrum, you can have an 
“on-off ” switch for consciousness92. Another relevant fact is that sal-
via divinorum, a psychoactive plant, affects k-opioid receptors that 
are most concentrated in the claustrum93. This is relevant because 
users of the drug describe the experience as being conscious, but not 
having full access to the sensory stream and memories (aka the neo-
cortex and the hippocampus). Francis Crick and Christof Koch have 
described the claustrum as the “conductor of consciousness”94. Their 
theory is that the claustrum synchronizes the cortex so that various 
conscious precepts occur on the same timeline. The salvia divino-
rum finding suggests that the claustrum may be even more involved 
in consciousness than that. As the structure is poorly studied, it may 
be too early to theorize further. Experimental findings describing 
the types of excitatory and inhibitory neurons in the claustrum, their 
dendritic mechanics and their connectome are necessary to advance 
our understanding of both the claustrum and consciousness. A bet-
ter understanding of the thalamus and layer 6 would also be helpful 
for understanding the claustrum, as the structures are highly inter-
connected.

Electrical synapses received only a brief mention in this book. 
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Our knowledge of their function is fairly limited. We know that they 
are important during cortical development in early childhood – they 
help the newly born neurons assemble into circuits95. However, they 
may also play an important role in the adult brain. A recent study 
suggested that electrical synapses help neurons synchronize in the 
cortex96. Beyond that, electrical synapses in excitatory neurons of the 
cortex remain very poorly studied. 

Another potential game changer is active information pro-
cessing in axons. In this book axons are treated like passive cables 
– which is reminiscent of how people used to treat dendrites. Axons 
have traditionally been very hard to study, but new methods are al-
lowing us to examine their inner workings. Early evidence suggests 
that axons possess active capabilities that help them precisely regu-
late the timing of spikes during high frequency firing97. Whether this 
is an auxiliary mechanism or a crucial information processing fea-
ture we do not know, nor do we know what other active mechanisms 
axons might possess. It is possible that they are just cables, but it is 
also possible that, like dendrites, they process information.

Finally, the inner workings of chemical synapses are perhaps 
our greatest unknown. In this book synapses are described as rela-
tively straightforward links between neurons, which are sometimes 
unreliable. But once again, things are rarely straightforward in biol-
ogy. A synapse has a lot of machinery that we don’t understand98. It 
is possible that this machinery introduces yet another layer of com-
putational complexity. To those attempting to figure it out, I wish the 
best of luck.



Afterword 

How Do We Understand 
the Cortex?

At some point, we are going to understand all of the afore-
mentioned things: synapses, axons, inhibitory cells, etc. One prob-
lem will still remain – how do we understand the neocortex? When 
we examine a dictionary, we can see many distinct parts, each of 
which looks different and has a function that is unique or close to it. 
When we examine a tree, we find that it has many leaves, all of which 
look the same and do the same thing.

The neocortex, however, is like neither of those things. It has 
many excitatory neurons, all of which look the samexliii but mean 
different things. It’s a devilishly tricky system to study. First of all, 
we don’t even have the methods to study it. We don’t have a way to 
observe a meaningful part of the cortex in action. That problem is 
being actively worked on – IARPA, DARPA’s younger sister, has a 
program called MICrONS, which aims to devise techniques to re-
cord neural activity at single neuron resolution from large volumes 
of the neocortex99. Let’s assume that they are successful beyond our 
wildest expectations and we gain the ability to record firing of neu-
xliii	  Sure, they can be divided into classes, but each class will still have millions of 
neurons in it.
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rons from the entire neocortex. What then? How do you begin to 
approach recordings from tens of billions of neurons?

Currently, most labs would try to do something like this: 
make a mouse perform certain activities, like running, jumping, or 
drinking, and look at which neurons fire during that activity. Then 
they would label those neurons as “running”, “jumping” or “drink-
ing” neurons. A recent study tried to utilize such an approach to try 
and understand a microprocessor100. Unsurprisingly, the approach 
failed – while they were able to find “Donkey Kong” transistors and 
“Space Invader” transistors, such information offered very little in-
sight into how a microprocessor actually works.

We need better questions to ask of neural data. We know that 
the neocortex operates in a world of sequences, so we need to look 
for sequences of neurons firing in different modes, including burst-
ing and regular firing. Moreover, to understand the principles of the 
neocortex we need to look for a very specific thing: how sequences 
on short-term timescales are combined to form sequences on lon-
ger-term timescales. That question is at the center of the quest to 
understand the cortex.

We need better ways to ask such questions, too. While it is 
possible (but not very fun!) to manually analyze recordings from 30 
or even 300 neurons, manual analysis will become an unrealistic way 
of dealing with data when we are able to record from millions and 
billions of neurons. New software will have to be developed to look 
for sequences and hierarchies of sequences in neural data. It will be 
machine learning software – hopefully new algorithms based on the 
principles of the cortex will be very helpful in this regard.

There is an issue with using machine learning to study the 
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brain, though. Consider the Deepmind algorithm that plays Go. 
It can make moves that are better than moves that humans would 
make, but it cannot at present communicate why those moves are 
better. Similarly, machine learning algorithms might find patterns 
in neural data, but, as of now, there are no good ways for them to 
explain the patterns to humans. Luckily, theoretical advances will be 
able to help with this problem. If we think that layer 2 neurons start 
firing when an object is identified and persist even when the object 
is out of the sensory field, we can train algorithms to look for such 
neurons and link them to the object, assuming the algorithms track 
everything in the sensory field as well.  If we know that layer 5 neu-
rons cause physical actions, we can also make algorithms look for 
such connections. At the end of the day, if you have labels that you as 
a researcher understand very well, algorithms can find the neurons 
that match the labels. Further theoretical advances, such as under-
standing cortical columns will help bridge the human-machine gap 
in understanding even more. Though the problem of understanding 
the neocortex seems daunting right now, the combined advance-
ment of better data collection tools and theoretical understanding of 
the cortex are likely to bring this biological marvel within our grasp 
sometime this century.
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